INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHAGALPUR

Mechatronics Engineering (MEA)

B.Tech. Curricula and Syllabus

Semester-III

Course Code	Course name	L	Т	Ρ	С	Year	Semester	Semester total credit
MA201	Engineering Mathematics III	3	1	0	4			
ME201	Solid Mechanics	3	0	2	4			
HS201	Management Concepts and Technology	2	0	0	2			
CS203	Object Oriented Programming	3	0	0	3	n	n	25
ME202	Thermodynamics	3	0	0	3	2	3	25
ME203	Electrical Machine	3	0	2	4			
CS211	Object Oriented Programming Lab	0	0	3	2			
ME211	Mechanical Workshop	0	0	3	2			
SAI-I	Society Academia Industry Internship - I	0	0	0	1			

Syllabus:

Course Code	Course name	L	Т	Р	С	Year	Semester
MA201	Engineering Mathematics III	3	1	0	4	2^{nd}	3 rd
Topic	Conter	No. of Lectures					
Module-1	Complex numbers and elementary properties. Complex functions - limits, continuity and differentiation. Cauchy-Riemann equations. Analytic and harmonic functions.						08
Module-2	Elementary functions. Anti-derivatives and path (contour) integrals. Cauchy-Goursat Theorem. Cauchy's integral formula, Morera's Theorem. Liouville's Theorem, Fundamental Theorem of Algebra and Maximum Modulus Principle. Taylor series. Power series. Singularities and Laurent series.						09
Module-3	Cauchy's Residue Theorem and applie Partial Differential Equations: First or nonlinear first order PDEs; classificat	der I	PDEs	; solu	ition	s of linear and	08
Module-4	Method of characteristics Iin PDI problems (Dirichlet and Neumann typ conduction equation, Laplace's equat separation of variables; initial bounda	e) in ions	volvi and s	ng w soluti	ave o	equation, heat by method of	08
Module-5	Solution of PDE by Laplace tran integrals; Fourier transforms, sine an PDE by Fourier transform.						10
						Total	43
Text	Publishers, 44 th edition, 2017.	 B S Grewal, J S Grewal, J K Dhanoa, <i>Higher Engineering Mathematics</i>, Khan Publishers, 44th edition, 2017. E. Kreyszig, H. Kreyszig, E. J. Norminton, <i>Advanced Engineering Mathematics</i>, 10 					
Reference	 Ian N Sneddon, <i>Elements of Parti</i> John H Mathews, Russell W <i>Engineering</i>, Jones and Bartlett II James Ward Brown, Ruel V Ch McGraw Hill Education, 8th edition 	How ndia urch	ell, (Pvt.L ill, (<i>Comp</i> .td, 6	olex th edi	Ananlysis for ition, 2011.	Mathematics and

Course Code	Course name	L	Т	Р	С	Year	Semester
ME201	Solid Mechanics	3	0	2	4	2^{nd}	3

Course objective:

1) To understand the basic concepts of the stresses and strains for different materials and strength of structural elements.

2) To know the development of internal forces and resistance mechanism for one dimensional and two dimensional structural elements.

3) To analyse and understand different internal forces and stresses induced due to representative loads on structural elements.

4) To analyse and understand principal stresses due to the combination of two dimensional stresses on an element and failure mechanisms in materials.

5) To evaluate the behavior of torsional members, columns and struts.

Topic	Contents	No. of Lectures
Module 1	Introduction, Definition and concept and of stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to self-weight. Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship	08
Module 2	Stress at a point, analysis of deformation and definition of strain components, principal stresses and strains, Mohr's circle representation. Constitutive relations.	08
Module 3	Material properties for isotropic materials and their relations, 3d stress – strain, Theories of failures for isotropic materials.	08
Module 4	Shear Force and Bending Moment diagrams. Axially loaded members. Stresses due to bending: pure Bending, transverse shear.	08
Module 5	Torsion of circular shafts, Combined stresses due to bending, torsion and axially loading. Deflections due to bending, Strain energy due to axial, torsion, bending and transverse shear. Castigliano's theorems. Thin cylinders and spherical vessels, columns.	08
	Total	40
Text	 E. P. Popov, "Engineering Mechanics of Solids", Prentice Hall, 1998. F. P. Beer, E. R. Johnston (Jr.) and J.T. DeWolf, "Mechanics of Materials", Ta Hill, 2005. 	uta McGraw
Reference	 S. H. Crandall, N. C. Dahl, and T. J. Lardner, "An Introduction to The M Solids", 2nd Ed., Tata McGraw Hill, 2008. S. P. Timoshenko, "Strength of Materials, Vols. 1 & 2", CBS Publishers, 1980. 	

Course Code	Course name	L	Т	Р	С	Year	Semester
HS201	Management Concepts and Technology	2	0	0	2	2^{nd}	3 rd
Торіс	Conter	nts	No. of Lectures				

Module-1	Principles of Management: Concept of Management, Functions of Management, Planning and its Nature &Organising, Designing organizational Structure, Authority relationships,	04
Module-2	Delegation of Authority. Staffing: Motivation and its Theory, Leadership Communication. Directing, Controlling & its techniques. Coordinating; Principles of Economic: Microeconomics: Concept of consumption, production, exchange, distribution.	05
Module-3	Demand analysis: Concept, kind of demand, change in demand, law of demand; Utility analysis: Marginal, total, consumer surplus, consumer equilibrium; Production analysis: Law of supply, different factors of production, law of returns, economies of scale.	06
Module-4	Cost analysis: Cost concept, importance of cost behaviour, cost classification; Pricing analysis: Different kinds of markets, pricing & equilibrium in different markets - perfect, imperfect, monopoly.	05
Module-5	Income distribution: Briefing them about rent, wages, interest and profit. The international economics: Changing scenario, globalization, structural adjustment programme, stabilization policy, the multinational corporation. IBRD, IMF, GATT, WTO, ITO, IDA, IFC, MIGA.	05
	Total	25
Text	 Business Organisation& Management - C.R Basu. Essentials of Management - Harold Koontz, HeingWerhrich. An introduction to Positive Economics; Lipsey. Modern Microeconomics; A. Koutsoyiannis. Managerial Economics - Analysis, Problems and Cases; P.L. Mehta. Business Economics; ManabAdhikary. 	

Course Code	Course name	L	Т	Р	С	Year	Semester
CS201	Object Oriented Programming	3	0	0	3	2^{nd}	3 rd
Course objective: The course is designed to provide students with complete knowledge of Objective							
	Programming through C++ and to enhance the programming skills of the students by giving						
U U	to be done in labs. The course also aims	-					•
Object Orie	nted Programming through C++ so that th	iey m	ake t	heir	own	Applications/Projects	using C++.
Торіс	Cont	tents					No. of
Торіс		ients					Lectures
Module-1	Principles of OOPs, Basics of C++, Fun Benefits of OOP, OOP Languages, App data types, operators in c++, scope re overloading, operator precedence. Main reference, inline functions, default arg overloading, friend and virtual functions	licati solut fun gume	ons o tion, ction nts,	of O(type , fun cons	OP. cast ction tant	C++ program basics, operators, operator prototyping, call by arguments, function	08
Module-2	Classes, objects, constructors and destru a class, defining a member function allocation for objects, static data mem objects, objects as function arguments pointers to members, constructors, constructors, Copy constructor, Destruct	, pri nbers , frie Para	vate and endly	mer mer fun	nber nber ction	functions, memory functions, array of s, returning objects,	08

Module-3	Operator overloading, inheritance, virtual functions and polymorphism – Overloading unary operators, overloading binary operators, rules for overloading operators, type conversions. Derived classes, single inheritance, multilevel inheritance, multiple inheritance, hierarchical inheritance, hybrid inheritance, virtual base classes, abstract classes, nesting of classes. Pointers, pointer to objects, this pointer, pointer to derived classes, virtual functions, pure virtual functions.	09
Module-4	Console I/O operations, working with files and templates $-C++$ streams and stream classes, unformatted I/O operations, formatted console I/O operations, managing output with manipulators. Classes for file stream operations, opening/closing of file, file pointers and their manipulation, error handling during file operation, command line arguments. Class templates, class template with multiple parameters, function templates, overloading template functions, member function templates, non-type template arguments.	09
Module-5	Exception handling and Standard template library – Basics of exception handling, exception handling mechanism, throwing mechanism, catching mechanism, rethrowing exception, specifying exception. Components of STL, Containers, Algorithms, Iterators, Application of Container classes, Functions objects.	08
	Total	42
Text	1. E. Balagurusamy, <i>Object Oriented Programming with C++</i> , Tata McGraw Hi	11.
	2. Herbert Schildt, C++: The Complete Reference, Osborne, 1991.	
Reference	1. Bjarne Stroustrup, 1. The C++ programming language, Pearson Education, 20	17.

Course Code	Course name	L	Т	Р	C	Year	Semester	
ME202	Thermodynamics	3	0	0	3	2 nd	3 rd	
Course obje	Course objective:							
	nake familiar with thermodynamic system							
	know the basic laws of thermodynamics, a							
	tify different types of properties ex. exter	isive	and	inten	sive	property.		
4. To c	levelop understanding of entropy						N C	
	Contents						No. of Lectures	
							Lectures	
Module:1								
Thermodyna	amic systems, States, processes, Zeroth la	w, w	ork a	nd h	eat		6	
Module : 2								
Joules expe	eriments, equivalence of heat and we	ork.	State	emen	t of	the First law of	8	
thermodyna	mics, extension of the First law to non -	cyc	lic p	oces	ses, o	energy, energy as a		
property, mo	odes of energy, Extension of the First law	to c	ontro	l vol	ume:	steady flow energy		
	EE), important applications. limitations o					•		
-	irect heat engine; schematic representati					•		
					-	-		
	at in a thermodynamic cycle; reversed		Ũ			•		
coefficients	of performance. Kelvin - Planck	state	emen	t of	the	e Second law of		
Thermodyna	amics; PMM I and PMM II, Clau	sius	stat	emer	nt of	f Second law of		
Thermodyna	amics, Equivalence of the two statements;	Car	not c	ycle,	Carn	ot principles.		

Module : 3		
Definitions	of a reversible process, reversible heat engine, importance and superiority of	8
	heat engine and irreversible processes; factors that make a process irreversible,	
	neat engines. Unresisted expansion, remarks on Carnot's engine, internal and	
	ersibility, Clasius inequality, Statement- proof, Entropy- definition, a property,	
	entropy, entropy as a quantitative test for irreversibility, principle of increase	
in entropy	entopy, entopy as a quantitative test for ineversionity, principle of mercuse	
Module : 4		
Introduction	n, Availability (Exergy), Unavailable energy, Relation between increase in	8
unavailable	energy and increase in entropy. Maximum work, maximum useful work	
	m and control volume, irreversibility, second law efficiency	
-		
Module : 5		
P-T and P-	V diagrams, triple point and critical points. Sub-cooled liquid, saturated liquid,	8
mixture of	saturated liquid and vapor, saturated vapor and superheated vapor states of pure	
substance w	with water as example. Enthalpy of change of phase (Latent heat). Dryness fraction	
(quality), T	-S and H-S diagrams, representation of various processes on these diagrams.	
	s and its use. Properties of mixtures of ideal gases, Thermodynamic cycles - Otto,	
Diesel, dual		
	Total	38
Text	1. R. E. Sonntag, C. Borgnakke and G. J. V. Wylen, "Fundamentals of Thermody 6th Ed., John Wiley, 2003.	ynamics",
	 P. K. Nag, "Engineering Thermodynamics", 5th Ed., Tata McGraw Hill Pub. 2 	2013.
Reference	1. Y. A. Cengel and M. A. Boles, "Thermodynamics, An Engineering Approach"	
	Tata McGraw Hill, 2003.	
	2. G. F. C. Rogers and Y. R. Mayhew, "Engineering Thermodynamics Work and	l Heat
	Transfer", 4th Ed., Pearson 2003.	

Course Cod	e Course name	L	Т	Р	С	Year	Semester
ME203	Electrical Machine	3	0	2	4	2 nd	3
Course objective: The aim is to deep exposition of the theory of electromechanical devices with specific emphasis on the theory of electric machines. The students would be able to understand and implement fundamentals of rotating electrical machines.							
	Contents						No. of
Module : 1							No. of Lectures

	Application of Permanent Magnet Materials, Energy in Magnetic System,	
	Field Energy and Mechanical Electromechanical Systems Force, Multiply-	
	Excited Magnetic Field Systems, Forces/Torques in Systems with Permanent	
	Magnets, Energy Conversion via Electric Field	
Module: 2	Introduction, Transformation Construction and Practical Considerations,	
	Transformer on No-Load, Ideal Transformer, Real Transformer and	
	Equivalent Circuit, Transformer Losses, Transformer testing, The per unit	08
	system, Efficiency and voltage regulation, Three phase transformers, Phase	
	Conversion, Voltage and Current Transformers, Transformer as a	
	Magnetically Coupled Circuit	
Module : 3	Elementary Machines, Generated EMF, MMF of distributed Winding,	
	Rotating Magnetic Field, Torque in round rotor machine, Operation of basic	
	machine types, Magnetic Leakage in Rotating Machines, Losses and	08
	Efficiency, Matching Characteristics of Electric Machine and Load, AC	
	Winding, DC winding, Fractional kilowatt motors.	
Module : 4	DC Machines: Introduction, EMF and Torque, Circuit Model, Armature	
	reaction, Commutation, Methods of Excitation, Magnetisation	
	Characteristics, Self-Excitation, Characteristics of DC Motor/Generator,	08
	Starting of DC motors, Speed control of DC motor, DC Machine dynamics,	
	Permanent Magnet DC motors	
Module : 5	Induction Machine: Introduction, Flux and MMF Waves in Induction Motor	
	- Principle of Operation, Development of Circuit Model, Power across air	08
	gap, Torque and Power Output, Tests to determine circuit model parameters,	
	Starting, Cogging and Crawling, Classes of squirrel cage motors	
	Total	41
Text	1)A Fitzgerald," Electric Machinery", , McGrawHill, 2017.	
	2)D. P. Kothari and I. J. Nagrath, "Electric Machines", McGrawHill, 201	3.
Reference	1) S. Chapman, "Electric Machinery Fundamentals", McGrawHill, 20	17.
	2) D. Fleish, "A Student's Guide to Maxwell's Equations", 2008.	