INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHAGALPUR

Mechatronics Engineering (MEA)

B.Tech. Curricula and Syllabus

Semester-II

Course Code	Course name	L	Т	Ρ	С	Year	Semester	Semester Total Credit
MA102	Engineering Mathematics – II	3	1	0	4			
CS102	Data Structures and Algorithms	3	0	0	3			
EC102	Digital Design	3	0	0	3			
EC104	Semiconductor Devices and Circuits	3	0	0	3			
ME101	Engineering Mechanics	3	1	0	4	1	2	23
CS112	Data Structure and Algorithm Lab	0	0	3	2			
EC113	Digital Design Lab	0	0	3	2			
EC114	Semiconductor Devices and Circuits Lab	0	0	3	2			
Society Academia Industry Internship								
	Total Credit							23

Syllabus:

Course Code	Course name	L	Т	Р	С	Year	Semester
MA102	Engineering Mathematics II	3	1	0	4	1 st	2 nd
Торіс	Conter	No. of Lectures					
Module-1	Vector functions of one variable – continuity, differentiation and integration; Functions of several variables - continuity, partial derivatives, directional derivatives, gradient, differentiability, chain rule; tangent planes and normal; Concavity-Convexity, Maxima and minima, Saddle Pont, Lagrange multiplier method.						09
Module-2	Repeated and Multiple integrals with applications to volume, surface area, Moments of Inertia, change of variables, Vector Fields, Line and Surface Integrals.						08
Module-3	Green's, Gauss' and Stokes' theorems and their applications; First order differential equations - exact differential equations, integrating factors, Bernoulli equations, existence and uniqueness theorem, applications						08
Module-4	Higher-order linear differential equations, solutions of homogeneous and non-homogeneous equations, method of variation of parameters. Series solutions of linear differential equations. Legendre equation and Legendre polynomials. Bessel equation and Bessel functions of first and second kinds.						09
Module-5	Systems of first-order equations, two system, phase plane, critical points, st	08					
Total							42
Text	 B S Grewal, J S Grewal, J K Dhanoa, <i>Higher Engineering Ma</i> Publishers, 44th edition, 2017. E. Kreyszig, H. Kreyszig, E. J. Norminton, <i>Advanced Engineering</i> Wiley India Pvt. Ltd., 2017 						
Reference	 D. Poole, <i>Linear Algebra: A Modern Introduction</i>, 4th edition, Brooks Cole, 2014. S. R. Ghorpade and B. V. Limaye, <i>A Course in Calculus and Real Analysis</i>, 1st edition, Springer India, 2006. 						

Course Code	Course Name	L	Т	Р	С	Year	Semester		
CS102	Data Structures and Algorithms	3	0	0	3	1 st	2^{nd}		
the algorith	Course Objective: A good algorithm usually comes together with a set of good data structures that allow the algorithm to manipulate the data efficiently. In this course, students will get to know various data structures that are used in various computational problems.								
Topic		Hour							
Module 1	Performance of algorithms: space and time co and upper bounds.	mple	exity	, asy	mpt	otic, lower	07		
Module 2	ks, queues,	07							
Module 3Algorithms for sorting and searching linear search, binary search, insertion-sort, selection sort, bubble sort, quicksort, merge sort, heapsort; Priority Queues: lists, heaps.							07		
Module 4	Hashing: separate chaining linear probing quadratic probing:								
Module 5	Module 5Graphs: Data Structures for Graphs, Breadth First Search, Depth First Search.								
Total						35			
Text 1. Data Structures with C; Seymour Lipschutz, ; 1st, McGraw Hill Education Limited; 2011. 2. Data Structures Using C, Aaron M. Tenenbaum, Yedidyah Langsam, and M Augenstein, Prentice-Hall, Inc., 2008						Moshe J.			
Reference	Reference1. Fundamentals of Data Structures in C; Ellis Horowitz, Sartaj Sahni, Susa 2nd, Universities Press (India) Private Limited; 2017.Reference2. Introduction to Algorithms; Thomas H Cormen, Charles E Leiserson, Ro 3rd, PHI Learning Private Limited; 2018.								

Course Code	Course name	L	Т	Р	С	Year	Semeste r
EC102	Digital Design	3	0	0	3	1 st	2^{nd}
system abst	ective: The main objective of this course i ractions such as digital representations of in olean algebra, state elements and finite sta	nforr	natio	n, log	gic ga	ates, combinational and	0
Topic	Con	tent	5				No. of Lecture s
Module-1	Number Systems and Codes, Positional number system, Binary, octal and hexadecimal number systems; Methods of base conversions; Binary, octal and hexadecimal arithmetic; Representation of signed numbers; Fixed and floating point numbers; Binary coded decimal codes; Gray codes; Error detection and correction codes - parity check codes and Hamming code						06
Module-2	Combinatorial Logic Systems: Definition and specification; Truth table; Basic logic operation and logic gates; Boolean Algebra and Switching Functions: Basic postulates and fundamental theorems of Boolean algebra; Standard representation of logic functions - SOP and POS forms; Simplification of switching functions - K-map and Quine-McCluskey tabular methods; Synthesis of combinational logic circuits						10
Module-3	Logic Gates, Two-level realizations using gates -AND-OR, OR-AND, NAND- NAND and NOR-NOR structures; Multifunction gates, Multi-bit adder, Multiplexers, DE-multiplexers, Decoders, Programmable ALU; Multiplexer- based realization of K-maps; Combinational circuit design using multiplexers and						09
Module-4	gates Sequential Logic systems: Latches and Flip-flops, Timing hazards and races; Analysis of state machines using D flip-flops and JK flip-flops; Synchronous and Asynchronous counters; Registers; Sequence generator using flip-flops; Design of state machines-state table, state assignment, transition/excitation table, excitation maps and equations, logic realization; Design examples						10
Module-5	Memory: Read-only memory, read/write memory-SRAM and DRAM; TTL, MOS, interfacing between logic families; RAM, ROM, PAL, and PLA.						07
						Total	42
Text	 M. Morris Mano, <i>Digital Logic and Computer Design</i>, Pearson Education, 1 2009. R. Tokheim, <i>Digital Electronics: Principles and Applications</i>, Tata McGravedition, 2017. 						
Reference	 edition, 2017. R. J. Tocci, N. S. Wisdmer and G. L. Moss, <i>Digital Systems: Principle and Applications</i>, Pearson Education, 10th edition, 2011. John F Wakerly, <i>Digital Design: Principles And Practices</i>, Pearson Education, 4th edition, 2008. 						

Course Code	Course name	L	Т	Р	С	Year	Semester	
EC103	Semiconductor Devices & Circuits	3	0	0	3	1 st	2^{nd}	
Course obj	Course objective: The main objective of this course is to study semiconductor materials and transport							
	mechanism, semiconductor diodes, bipolar transistors, field effect devices and transistors. More							
	, the course objectives are to:							
	ce students to the physics of semiconducto							
	nd technologies.							
Торіс	Content						No. of Lectures	
Module-1	Introduction of semiconductors, equilibries semiconductors; Bond model and semiconductors, Density of state, Fere Carrier transport in semiconductor conductivity; Excess carrier, method of extrinsic semiconductors. Doping and di	08						
Module-2	P-N Junction: Simplified device struc diode; depletion region, forward and reve capacitances, switching characteristics; diode, Tunnel diode; Diode Application Rectifier, Clippers and Clampers, and Zo	09						
Module-3	Simplified device structure and physical operation of BJT, I-V characteristics of BJT, carrier distribution; current gain, transit time, secondary effects; SPICE model. Metal-semiconductor junctions, Breakdown of the junction with the non-impact and impact ionization, β -I _C characteristics curve, variation of α with I _c ; Small signal equivalent circuit, BJT Amplifiers: Transistor Configuration analysis, Common base, Common emitter and Common collector						08	
Module-4	MOS structure, Energy band diagrams, F voltage, Surface accumulation, surface and threshold voltage, MOS C-V Characteristics.	08						
Module-5	Introduction to Field effect transistors, of Junction Field effect transistors; N characteristics; MOSFETS: Enhanceme MOSFET, Basic Operation and Character MOSFET characteristics	09						
						Total	42	
Text	 R. F. Pierret, <i>Semiconductor Device Fundamentals</i>, Pearson Education B. G. Streetman and S. K. Banerjee, <i>Solid State Electronic Devices</i>, Portth edition, 2015. A. S. Sedra, K. C. Smith and A. N. Chandorkar, <i>Microelectronics</i> university Press India, International Version 7th edition, 2017. 						Pearson Education,	
Reference	 J. Singh, Semiconductor Devices - Basic Principles, John Wiley & Sons Inc., 1st edition, 2001. 							

Course Code	Course name	L	Т	Р	С	Year	Semester
ME102	Engineering Mechanics	3	1	0	4	1 st	2 nd

Course objective:

- 1. The primary purpose of the study of engineering mechanics is to develop the capacity to predict the effects of force and motion while carrying out the creative design functions of engineering.
- 2. This capacity requires more than a mere knowledge of the physical and mathematical principles of mechanics.
- 3. The ability to visualize physical configurations in terms of real materials, actual constraints, and the practical limitations which govern the behaviour of machines and structures.

	Contents	No. of Lectures					
Module 1	Equivalent force systems; free-body diagrams; degrees of freedom; equilibrium equations;	10					
Module 2	Analysis of determinate trusses and frames; properties of surfaces friction.	08					
Module 3	Centroids and centres of gravity, Moment of Inertia; Virtual work principal						
Module 4	Equations of motion; work-energy and impulse-momentum principles; 10 Generalized coordinates; Lagrangian mechanics.						
Module 5	Plane kinematics and kinetics of rigid bodies including work-energy and impulse-momentum principles; single degree of freedom rigid body systems.						
	Total	48					
Text	 H. Shames, "Engineering Mechanics: Statics and Dynamics", 4th Ed., PI F. P. Beer and E. R. Johnston, "Vector Mechanics for Engineers, Vol I – Vol II -Dynamics, 3rd Ed., Tata McGraw Hill, 2000. 	· · · · · · · · · · · · · · · · · · ·					
Reference	1 S. Timoshenko, D.H. Young, I.V. Rao and S. Pat, "Engineering Mechanics"						
	Dynamics", 5th Ed., John Wiley, 2002.4).						