Indian Institute of Information Technology Bhagalpur Electronics and Communication Engineering (ECE)

B.Tech. Curricula and Syllabus

Semester-V

Curricula:

Course Code	Course name	L	Т	Ρ	С
<u>EC301</u>	Digital Signal Processing	3	0	0	3
<u>EC302</u>	Control Systems	3	1	0	4
<u>EC303</u>	Introduction to VLSI Design	3	0	0	3
<u>EC304</u>	IoT and Embedded System	3	0	0	3
<u>CS303</u>	Artificial Intelligence	3	0	2	4
EC311	Digital Signal Processing LAB	0	0	3	2
EC312	IOT and Embedded System LAB	0	0	3	2
EC313	VLSI Design LAB	0	0	3	2
SAI-S-II	Academia Internship	0	0	0	1

Syllabus:

Course Code	Course name	L	Т	Р	С	Year	Semester	
EC301	Digital Signal Processing	3	0	0	3	3 rd	5 th	
Course object	Course objective: The main objectives of the course are: to identify the signals and							
principles of d	liscrete-time signal analysis to perform	vari	ous s	ignal	ope	rations, apply	the principles of z-	
	finite difference equations, apply the pr	-					-	
· ·	racteristics of discrete-time signals and	•			•	· ·	f signal analysis to	
filtering and us	se computer programming tools to proc	ess a	ind v	suali	ize si	gnals.	1	
Торіс	Conter	nts					No. of Lectures	
	Review of discrete time signals, system							
Module-I	signals, systems and their classification						08	
Wiodule 1	systems: impulse response, difference	00						
	transfer function, DTFT, DTFS and Z							
	Ideal filter characteristics, low-pass,	•	-		-			
	stop filters, Paley-Wiener criterion,	•					08	
Module-II	comb filters, Butterworth filter, che	•				•		
	minimum phase, maximum phase and mixed phase systems.							
	Signal flow graph representation, ba							
	systems (direct, parallel, cascade and							
Module-III	theorem, ladder and lattice structure	09						
	windows, frequency sampling, Remez algorithm and least mean square							
	error methods; Design of IIR filters u							
	transformation and frequency transformations.							

Module-IV	Computational problem, DFT relations, DFT properties, fast Fourier transform (FFT) algorithms (radix-2, decimation-in-time, decimation-in-frequency), Goertzel algorithm, linear convolution using DFT.	08
Module-V	Finite word-length effects in digital filters: Fixed and floating point representation of numbers, quantization noise in signal representations, finite word-length effects in coefficient representation, round-off noise, SQNR computation and limit cycle; Introduction to multi-rate signal processing: Decimation, interpolation, poly-phase decomposition.	09
	Total	42
Text	 S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, Ta edition, 2001. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Princip Applications, PHI, 4th edition, 2007. 	
Reference	1. A. V. Oppenheim and R. W. Shafer, <i>Discrete-Time Signal Processing</i> ; Pl	HI, 2^{nd} edition, 2004.

Course Code	Course name	L	Т	Р	С	Year	Semester
EC302	Control Systems	3	1	0	4	3 rd	5 th
Course objective: To provide the basic skills required to understand, develop, engineering applications involving electromagnetic fields. To lay the foundations of el its practice in modern communications such as wireless, guided wave principles such electronic electromagnetic structures.					ndations of elec	ctromagnetism and	
Торіс	Contents						No. of Lectures
<u>Module-I</u>	Basic Concepts of Control Syst systems, Derivation of Transfer Mason's Gain Formula; Feed Systems; Time response of first Steady State Errors and Static Er	fun back orde	ction char r and	s, Si racte Sec	gnal ristic ond o	flow Graphs, s of Control order systems,	09
<u>Module-II</u>	stability criterion to linear feedby shifting the origin in s-plane; Ro Systems with transportation lag, and zeros on Root locus; Fr correlation between Time and Fr	Routh-Hurwitz stability criterion, Application of the Routh stability criterion to linear feedback system, Relative stability by shifting the origin in s-plane; Root locus concepts, Root contours, Systems with transportation lag. Effect of adding open loop poles and zeros on Root locus; Frequency domain specifications, correlation between Time and Frequency Response with respect to second order system, Polar plots, Bode plot, Determination of Gain				08	
<u>Module-III</u>	Stability in frequency domain: stability criterion, Application linear feedback system. Consta Nichol's chart; Controllers: Cor and Integral Control actions, P,	Stability in frequency domain: Principle of argument, Nyquist stability criterion, Application of Nyquist stability criterion for linear feedback system. Constant M-circles, Constant N-Circles, Nichol's chart; Controllers: Concept of Proportional, Derivative and Integral Control actions, P, PD, PI, PID controllers. Zeigler- Nichols method of tuning PID controllers					08
<u>Module-IV</u>	Mapping between the S-Plane ar Complementary Strips, Const damping ratio loci, Stability Ana Z-Plane. Jury stability test, Stabil Transformation and Routh Stabi	tant lysis ity A	freq of clo nalys	uenc osed sis by	y lo loop	oci, Constant systems in the	08

Module-V	Transient and steady State Response Analysis, Design based on the frequency response method, Bilinear Transformation and Design procedure in the w-plane, Lead, Lag and Lead-Lag compensators and digital PI, PD, and PID controllers.	09
	Total	42
Text	 I. G. Nagarath, M. Gopal, <i>Control Systems</i>, Tata McGraw Hill Education M. Gopal, Digital Control and State Variables Methods, Tata McGraw edition, 2003. 	
Reference	 B. C. Kuo, Automatic Control Systems, Tata McGraw-Hill, 10th editio K. Ogata, Modern Control Engineering, Pearson Education India, 5th 	

Course Code	Course name	L	Т	Р	С	Year	Semester
EC303	Introduction to VLSI Design	3	0	0	3	3 rd	5 th
Course object	Course objective: This is an advanced course which introduces the issues, processes						and the technology
	a digital integrated circuit (IC). Thi	s cou	irse	also	intro	duces the MC	SFET and CMOS
technology use	d in the fabrication of ICs.						
Topic	Conter						No. of Lectures
Module-I	Issues and Challenges, design his integration density and Moore's law	, VL	SI de	esign	styl	es; CMOS p-	08
	well and n-well processes, layout designs	_				-	
Module-II	Module-II MOS Device Model with Sub-micron Effects, VTC Parameters, CMOS Propagation Delay, Parasitic Capacitance Estimation, Layout of an Inverter, Switching, Short-Circuit and Leakage Components of					ation, Layout	09
	Energy and Power;					•	
Module-III	Interconnects: Resistance, Capacita Chains, Low Swing Drivers, Power	Dis	tribu	tion,	and	Performance	08
	Optimization of Digital Circuits by L						
Module-IV	Static CMOS Construction, Ratioed Logic, Pass Transistor, Transmission Gate Logic, DCVSL, Dynamic Logic Design and noise considerations in dynamic design, Power Dissipation in CMOS, Domino and NORA designs.					09	
Module-VClassification, Parameters, Static Latches and Register, Race Condition, Dynamic Latches and Registers, Two Phase vs. Single Phase clock designs,					08		
						Total	42
Text	1. J. M. Rabaey, A. Chandrakasan <i>Perspective</i> , PHI, 2 nd edition, 2009.						
Reference	1. N. Weste and D. Harris, <i>CMOS VI</i> Education India, 3 rd edition, 2012.	LSI D	esign	: <u>A</u> C	Circui	ts and Systems	Perspective, Pearson

Course Code	Course name	L	Т	Р	С	Year	Semester
EC304	IoT & Embedded Systems	3	0	0	3	3 rd	5 th

Course objective: This main objective of this course facilitates to design, describe, validate and optimise embedded electronic systems in different industrial application areas. More particularly, the architecture of advanced processors, their instruction sets, interfacings to develop different kinds of systems.

- 1. To provide in depth knowledge about embedded processor, its hardware and software.
- 2. To explain programming concepts and embedded programming in C and assembly language
- 3. To explain real-time operating systems, inter-task communication and an embedded software development tool.

Topic	Contents	No. of Lectures
<u>Module-I</u>	An introduction to Embedded system design & modelling with unified mark-up language; 8-bit and 16- bit, von Neumann and Harvard architectures, CISC and RISC architectures; Advanced RISC Machines, Open source core (LEOX), Introduction to microcontrollers, ARM versions, ARM instruction set: assembly language, Thumb instruction set, memory organization, data operations and flow control; Input/output mechanisms, isolated and memory mapped IO; interrupts and real time operations, ARM interrupts vectors, priorities and latency; co-processors; cache memory and memory management.	09
<u>Module-II</u>	Embedded Platforms: bus protocols, system bus configuration, USB and SPI buses, DMA, ARM bus; memory devices: memory device configuration, ROM, RAM, DRAM; I/O devices: timers, counters, ADC & DAC, keyboards, displays and touch screens. Processes: multiple tasks and multiple processes; process abstraction; context switching: cooperative multitasking, pre-emptive multitasking, process and object-oriented design	09
<u>Module-III</u>	Operating Systems: operating systems and RTOS; scheduling polices; inter-process communication; Networks: distributed embedded architectures: networks abstractions, hardware and software architectures; networks for embedded systems: I2C bus, CAN bus.	09
Module-IV	An Introduction to Internet-of-Things, Sensing, Actuation, Basics of Networking; Communication Protocols, Sensor Networks, Machine- to-Machine Communications, Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination	07
Module-V	Developing IoTs: Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python; Domain specific applications of IoT: Home automation, Industry applications, Surveillance applications, Other IoT applications.	08
	Total	42
Text	 A. N. Sloss, D. Symes, and C. Wright, ARM system developer's guid optimizing system software; Elsevier, 1st edition. 2008. Pethuru Raj and Anupama C. Raman, The Internet of Things: Enal Platforms, and Use Cases, CRC Press, 2017. 	
Reference	 Arshdeep Bahga and Vijay Madisetti, <i>Internet of Things: A Hands-on App</i> Press, 2017. W. Wolf, <i>Computers as components: Principles of embedded comput</i> Elsevier, 3rd edition, 2013. 	·

Course Code	Course name	L	Т	Ρ	С	Year	Semester
CS303	Artificial Intelligence	3	0	2	4	3 rd	5 th
Course Objective	: The objective of the course is to p	reser	nt an	over	view	of artificia	al intelligence (AI)
principles and app	proaches. Develop a basic understa	ndin	g of t	he bı	uildin	ig blocks o	of AI as presented
in terms of intelli	gent agents: Search, Knowledge rep	orese	ntati	on, ir	nfere	nce, logic	, and learning.
Торіс	Conten	ts	_	_	_		No. of Lectures
Module 1	Fundamental issues in intelligent	syste	ms: I	Histo	ry of	artificial	2
	intelligence; philosophical	ques	tions	;;	fund	amental	
	definitions; philosophical question	ns; m	odel	ing tl	ne w	orld; the	
	role of heuristics.						
Module 2	Search and constraint satisfaction	on: P	roble	em sp	paces	s; brute-	10
	force search; best-first search; tw	/o-pl	ayer	game	es; co	onstraint	
	satisfaction.						
Module 3	Knowledge representation and			•			8
	propositional and predicate logi						
	proving; non-monotonic inference	ce; p	roba	bilist	ic re	asoning;	
	Bayes theorem.	<u> </u>					
Module 4	AI planning systems: Definition			•			8
	systems; planning as search;	ope	rator	-base	ea p	bianning;	
Module 5	propositional planning. Sequential decision making:	Achi	ouin	- b.	ehavi	iour bu	7
would 5	specifying rewards, Markov Decis			-	liavi	iour by	/
	specifying rewards, Markov Decis					Total	35
	1					Total	
Text Books	1. Stuart Russell and Pete	er N	orvig	: Ar	tifica	I Intellige	ence: A Modern
	Approach, Pearson; Third		-			C	
			-	-		Nair. Arti	ficial Intelligence.
	 Elaine Rich, Kevin Knight and Shivashankar B Nair, Arti Tata McGraw Hill, 3rd Edition 2009. 						
Reference				-			
Books	1. N. J. Nilsson, "Principles of Ar 1980.	tificia	al Inte	ellige	nce"	, Narosa F	Publishing House,
	2. Clocksin & Mellish, Programm	ning	in PP		G Na	arosa Publ	House
		5		5-0	J, 140		