Indian Institute of Information Technology Bhagalpur Electronics and Communication Engineering (ECE)

B.Tech. Curricula and Syllabus

Semester-IV

Curricula:

Course	Course name	L	Т	Ρ	С
Code					
<u>EC203</u>	Analog Electronics	3	0	0	3
<u>EC204</u>	Digital Communication	3	0	0	3
EC208	Microprocessor and Interfacing	3	0	0	3
<u>EC202</u>	Signals and Systems	3	0	0	3
<u>MA203</u>	Probability and Statistics	3	1	0	4
EC215	Analog Electronics LAB	0	0	3	2
EC217	Digital Communication LAB	0	0	3	2
EC218	Microprocessor and Interfacing LAB	0	0	3	2

Syllabus:

Course Code	Course name	L	Т	Ρ	С	Year	Semester
EC203	Analog Electronics	3	0	0	З	2 nd	3 rd

Course objective: The objective of this course is to provide an introduction to Amplifiers using transistors. More particularly,

- 1. To give the idea about fundamental properties of semiconductors.
- 2. To prepare students to perform the analysis of any Analog electronics circuit.
- 3. To empower students to understand the design and working of BJT / FET amplifiers, oscillators and Operational Amplifier.

Tonic	Contents	No. of Lectures
Module-I	BJT Amplifiers: Transistor Configuration analysis, Biasing circuit techniques, Locating the Q-points, Fixed bias or Base bias, Stability of the operating point, Stability factor, AC load line, Emitter /feedback bias, Collector feedback bias, Small signal CE amplifier, CC amplifier, h-parameters, Hybrid π model analysis, Frequency response, Feedback amplifiers: negative and positive feedback. Topologies of the feedback amplifiers, Effect of feedback on gain, Input and output impedances, Effect of positive feedback	10
Module-II	FET Amplifiers: Operation, Trans-conductance curve, Biasing of FET, Self-Bias, Voltage divider bias, Current source bias. Compound configuration: Darlington circuit, Cascade Amplifier, Types of Coupling: RC Coupling, Impedance Coupling, Transformer Coupling, Direct Coupling	08

Module-III	Transistorized Audio Power Amplifiers, Difference between Voltage and Power amplifier, Performance quantities, Class A, Class B, Class C power amplifiers. Thermal Runway, Heat Sink, Stages of practical power amplifier. Oscillators: Harmonic Oscillators, RC Phase shift Oscillators, Transistor Phase Shift Oscillator, Colpitts Oscillators and Crystal Oscillator	06			
Module-IV	IC Op-Amps and its ideal characteristics, Basic analog circuit using Op-Amps, Miscellaneous circuits and techniques: Capacitance multiplier, Inductance simulator, Non-inverting and Inverting Integrator and Differentiator, Differential amplifiers, Current mirrors, Parameters of Op-Amp, Open loop and Closed loop Op- amp configuration, Voltage Series and Voltage Shunt feedback	08			
Module-V	Filters: first and second order low pass and high pass filters, Comparators, Schmitt trigger circuit, Oscillator, Triangular wave generator, Voltage regulator, Emitter follower regulator, current source, Sample and hold circuits, Log and Antilog amplifiers.	08			
	Total	42			
Text	 B. Razavi, <i>Design of Analog CMOS Integrated Circuits</i>, Tata McGraw-Hill, 2nd edition, 2017. A. S. Sedra, K. C. Smith and A. N. Chandorkar, <i>Microelectronics circuits</i>, Oxford university Press India, International Version 7th edition, 2017. 				
Reference	 R. J. Baker, H W Li, D. E. Boyce, CMOS Circuit design, Layout an Wiley & Sons, 2nd edition, 2004. 	<i>d Simulation,</i> John			

Course Code	Course name	L	Т	Р	С	Year	Semester
EC204	Digital Communication	3	0	0	6	2 nd	4 th
Course objective: This course is intended to cover the basic principles and concer communication systems. Basic digital modulation techniques like ASK, FSK, PSK, PCM and included in the course. Multiplexing schemesare also considered.							oncepts of digital A and DM are also
Торіс	Contents						No. of Lectures
Module-I Module						08	
Module-II Concepts of logarithmic compressor, PCM, DPCM, DM. Concepts of Granular and Slope overload distortion, ADPCM. Time-division multiplexing, switching in time division multiplexing, Bandwidth requirement for TDM, Pulse shaping and Inter-symbol interference. Raised cosine filter, Base-band and Band-pass signal representation,					09		

	Conversion and energy relation between band-pass and base-band signal, equalizers and matched filters						
Module-III	Description of digital modulation techniques. Base-band and Band Pass modulation, mapping, Pulse Amplitude modulation and Demodulation. Concepts of matched filters, PSK, QAM, 8, 16, 64 QAM, Orthogonal vectors, and Basis, PPM, Demodulation of FSK, PSK and PPM. Concepts of bi-orthogonal Modulation.	09					
Module-IV	Concepts associated with the probability and random process. Different types of channels and their models e.g. BSC and BEC channels, Binary eraser error and eraser channel, DMC channels, continuous time AWGN channel. Information theory and its importance in the field of digital communication system, Source coding and source coding theorem Concepts of Entropy, Channel coding Theorem	09					
Module-V	Multiplexing schemes: frequency division multiplexing; time division multiplexing	07					
Total		42					
Text	 A.J. Viterbi, J. K. Omura, Principle of Digital Communication and Coding, Tata McGraw- Hill, 2nd edition, 2015. S. Haykin, Communication Systems, John Wiley & Sons, 4th edition, 2006. 						
Reference	1. B. P. Lathi, Modern Analog and Digital Communication systems, Oxford University Press, 3 rd edition, 1998.						

Course Code	Course name	L	Т	Ρ	С	Year	Semester
EC202	Signals and Systems	З	0	2	4	2 nd	3 rd
Course object	Course objective: The main objective of this course are:						
1. To explai	n signals and systems representation	ns/cla	assifi	catio	ns a	nd also descr	ibe the time and
frequency	domain analysis of continuous time	signa	ls w	ith F	ourie	r series, Fouri	er transforms and
Laplace tr	ansforms.						
2. To unders	tand Sampling theorem, with time and	l frec	quen	cy do	mair	n analysis of di	screte time signals
with DTFS	, DTFT and Z-Transform.						
3. To presen	t the concepts of convolution and corr	elatio	on int	tegra	ls an	d also underst	and the properties
in the con	text of signals/systems and lay down the second	ne fo	unda	tion	for a	dvanced cours	es.
Торіс	Contents No. of Lectures						No. of Lectures
	Signals: classification of signals; signal	oper	atior	ns: sc	aling	, shifting and	
Module-I	inversion; Signal properties: symme	etry,	peri	iodici	ity a	nd absolute	08
	integrability; elementary signals.						

Module-II	Systems: classification of systems; system properties: linearity, time/shift-invariance, causality, stability; Continuous and Discrete LTI systems, response to an arbitrary input: convolution; system representation using differential and difference equations; Eigen functions of LTI/ LSI systems, frequency response and its relation to the impulse response.	09
Module-III	Signal Representation: Signal space and orthogonal bases; Fourier series representation of continuous-time and discrete-time signals; continuous-time Fourier transform and its properties; Parseval's relation, time-bandwidth product; discrete-time Fourier transform and its properties; relations among various Fourier representations.	09
Module-IV	Sampling theorem; quantization, aliasing; signal reconstruction: ideal interpolator, zero-order hold, first-order hold; discrete Fourier transform and its properties.	08
Module-V	The Laplace transforms for continuous-time signals and systems, Properties of the Laplace transform, Analysis and characterization of LTI systems using the Laplace transform, z-transformation, Properties of the Z-Transformations, Inversion of the z-transform, The One-Sided Z-transformation, Analysis of Linear-Time-Invariant Systems in the Z- Domain	08
	Total	42
Text	 Oppenheim and Schafer, Signals and Systems, PHI, 2nd edition, 2015. B. P. Lathi, Signal Processing and Linear Systems, Oxford University 1998. 	Press, 2 nd edition
Reference	1. S. Haykin and B. Van Been, Signals and Systems, John Wiley & Sons,	2 nd edition 2007.

Course Code	Course name	L	Т	Ρ	С	Yea	ar Semester		
EC208	Microprocessor and Interfacings	2 nd	^d 4 th						
Course object	ive: The main objective of the course is to fami	liari	ze s	tuder	nts al	oout	hardware design		
including logic	design, basic structure and behaviour of the varie	ous	func	tiona	l mo	dules	of the computer		
and how they	interact to provide the processing needs of the use	er.							
Торіс	Contents						No. of Lectures		
	8086 Processor: Historical background, 8086	CP	U A	Archit	tectu	re.			
	Addressing modes, Machine language instruction	on fo	orma	ats, N	1achi	ne			
Module I	coding the program. Instruction Set of 8086	: Da	ta t	ranst	fer a	nd	08		
	arithmetic instructions. Control/Branch Instruc	of							
	these instructions with example programs.								
	Logical Instructions, String manipulation	ins	truc	tions	, Fl	ag			
	manipulation and Processor control instructions	, Illu	strat	tion c	of the	se	00		
Module II	instructions with example programs. Assembler Directives and								
	Operators, Assembly Language Programming and	d exa	amp	le pro	ogran	ns.			
	Stack and Interrupts: Introduction to stack, Stac	ck st	ruct	ure c	of 808	36,			
Module III	Programming for Stack. Interrupts and Interru	es,	08						
	Interrupt cycle of 8086, NMI, INTR, Interrupt programming, Passing								
	parameters to procedures, Macros, Timing and I	Dela	ys.						

Module IV	8086 Bus Configuration and Timings: Physical memory Organization, General Bus operation cycle, I/O addressing capability, Special processor activities, Minimum mode 8086 system and Timing diagrams, Maximum Mode 8086 system and Timing diagrams. Basic Peripherals and their Interfacing with 8086 (Part 1): Static RAM Interfacing with 8086, Interfacing I/O ports, PIO 8255, Modes of	09
	Segment digits using 8255.	
Module V	Basic Peripherals and their Interfacing with 8086 (Part 2): Interfacing ADC-0808/0809, DAC-0800, Stepper Motor using 8255. Timer 8254 – Mode 0, 1, 2 & 3 and Interfacing programmes for these modes. INT 21H DOS Function calls - for handling Keyboard and Display. Other Architectures: Architecture of 8088 and Architecture of NDP 8087.	08
	Total	42
Text	 Hall D.V., <i>Microprocessor and Interfacing-Programming and</i> McGraw-Hill, 2nd edition, 2008. R.S. Gaonkar, <i>Microprocessor Architecture, Programming and Ap</i> International, 5th edition, 2007. 	Hardware", Tata
References	 W. Stallings, Computer Organization and Architecture: Designing Prentice Hall, 6th edition, 2005. David A. Patterson, John L. Hennessy, Computer Architectur Approach, Morgan Kaufmann,3rd edition, 2002. 	g for Performance, e: A Quantitative

Course Code	Course name	L	Т	Ρ	С	Year	Semester
MA203	Probability and Statistics	3	1	0	4	2 nd	4 th
Topic	Conter	nts					No. of Lectures
Module-I	Basic Probability: Sample Space and Probability, equally likely events, in Probability, Expectations; Rando Continuous Probability Distributions. Functions.	08					
Module-II	Distributions:Binomial-Poisson-Geometric-Uniform-Normal- exponential-Gamma; Two Dimensional Random Variables: Joint Distribution, Marguinal and Conditional Distribution, Covariance, Correlation Coefficient Linear Regression				10		
Module-III	Transformation of random variables, Sampling Distributions: The Central Limit Theorem, distributions of the sample mean and the sample variance for a normal population, Chi-square, t- and F distributions. Descriptive Statistics: Graphical representation, measures of locations and variability.					09	
Module-IV	Estimation: Unbiasedness, Consisten the method of maximum likelihood for parameters in one sample and t populations, confidence intervals for	cy, tl estin wo s prop	ne m natio amp portic	etho n, co le pr ons.	d of r nfide obler	moments and ence intervals ms of normal	07

Module-V	Testing of hypotheses: Null and alternative hypotheses, the critical and acceptance regions, two types of error, power of the test, the most powerful test and Neyman-Pearson Fundamental Lemma, tests for one sample and two sample problems for normal populations, tests for proportions, Chi-square goodness of fit test and its applications.	09
	Total	43
Text	 P G Hoel, S C Port, C J Stone, <i>Introduction to Probability Theory</i>, U 2000. J. Medhi, <i>Stochastic Processes</i>, New Age International, 4th edition, 	niversal Book Stall; 2017.
Reference	1. R. D. Yates and D. J. Goodman, <i>Probability and Stochastic Process</i> edition, 2012.	es, Wiley India, 2 nd