Indian Institute of Information Technology Bhagalpur **Electronics and Communication Engineering (ECE)**

B.Tech. Curricula and Syllabus Semester-II

Curricula:

Course	Course name	L	Т	Р	С
Code					
MA102	Engineering Mathematics – II	3	1	0	4
CS102	Data Structures and Algorithms	3	0	0	3
EC102	Digital Design	3	0	0	3
EC104	Semiconductor Devices and Circuits	3	0	0	3
ME103	Engineering Materials	3	1	0	4
CS112	Data Structure and Algorithm LAB	0	0	3	2
EC113	Digital Design LAB	0	0	3	2
EC114	Semiconductor Devices and Circuits LAB	0	0	3	2
NSS	National Service Scheme	0	0	0	0

Syllabus:

Course Code	Course Name	L	Т	Р	С	Year	Semester
MA102	Engineering Mathematics II	3	1	0	4		
Course Obje	ective:						
Topic							
Module I	Vector functions of one variable – continuity, differentiation and integration. Functions of several variables - continuity, partial derivatives, directional derivatives, gradient, differentiability, chain rule; tangent planes and normals. Concavity-Convexity, Maxima and minima, Saddle Pont, Lagrange multiplier method.						
Module II	Reneated and Multiple integrals with applications to volume, surface area. Moments of						
Module III	Green's, Gauss' and Stokes' theorems and their applications.						
Module IV	Higher-order linear differential equations, solutions of homogeneous and non-						
Module V Systems of first-order equations, two-dimensional linear autonomous system, phase plane, critical points, stability.							8

		Total	43
Text	 Thomas Calculus; Maurice D Weir, Joel Hass, ; 13th, Pearson India Ed 2008. Advanced Engineering Mathematics; Erwin Kreyszig, Herbert Kreyszig, 10th, Wiley India Pvt. Ltd.; 2017. Elementary Differential Equations and Boundary Value Problems; Willi DiPrima, ; 9th, Wiley India Pvt. Ltd.; 2009. 	Edward J Norr	minton;
Reference	 Calculus Early Transcendentals; James Stewart, , ; 7th, Cengage; 2012 A Course in Multivariable Calculus and Analysis; Sudhir R Ghorpade, Basteringer; 2018. Differential Equations; Shepley L Ross, Richard C DiPrima, ; 3rd, Wiley 	almohan V Lima [,]	

Course Code	Course Name	L	Т	Р	С	Year	Semester
CS102	Data Structures and Algorithms	3	0	0	3	1 st	2 nd
Course Objective:	A good algorithm usually comes together	with	a se	t of	good	data struct	cures that allow
_	nanipulate the data efficiently. In this cour		tude	nts \	vill g	et to know	various data
	e used in various computational problems.						
Topic							Hour
Module I	Performance of algorithms: space and tim lower and upper bounds.	ne co	mple	exity	, asy	mptotics,	7
Module II	Fundamental Data structures: arrays, link queues, binary trees, tree traversals.	ed lis	sts, n	natri	ces,	stacks,	7
Module III	Algorithms for sorting and searching: linear search, binary search, insertion-sort, selection sort, bubble sort, quicksort, mergesort, heapsort; Priority Queues: lists, heaps.						7
Module IV	Hashing: separate chaining, linear probing, quadratic probing; Search Trees: binary search trees, B-trees.						6
Module V	Graphs: Data Structures for Graphs, Breadth First Search, Depth First Search.						8
						Total	35
Text	 Data Structures with C; Seymour Lipsch Limited; 2011. Introduction to Algorithms; Thomas H O 3rd, PHI Learning Private Limited; 2018. 						, ,
Reference	1. Fundamentals of Data Structures in C; I 2nd, Universities Press (India) Private Lim				Sart	aj Sahni, Su	isan Anderson;

Course Code	Course name	L	Т	Р	С	Year	Semester

EC102	Digital Design 3 0	0	3 .	1 st	2 nd
system abstrac	re: The main objective of this course is to introductions such as digital representations of infourits, Boolean algebra, state elements and finite s	rmatio	on, lo	ogic gates, o	
Topic	Contents	tate II	iaciiii	ic (1 51v13).	No. of Lectures
Module-I	06				
Module-II	Combinatorial Logic Systems: Definition and table; Basic logic operation and logic gates; Switching Functions: Basic postulates and fun Boolean algebra; Standard representation of and POS forms; Simplification of switching for Quine-McCluskey tabular methods; Synthesis circuits	10			
Module-III	Logic Gates, Two-level realizations using gat NAND-NAND and NOR-NOR structures; Mult bit adder, Multiplexers, DE-multiplexers, Dec ALU; Multiplexer-based realization of K-maps design using multiplexers and gates	09			
Module-IV	Sequential Logic systems: Latches and Flip-flor races; Analysis of state machines using D flip- Synchronous and Asynchronous counters; generator using flip-flops; Design of state mac assignment, transition/excitation table, e equations, logic realization; Design examples	10			
Module-V	Memory:Read-only memory, read/write mem TTL, MOS, interfacing between logic families; PLA.	•		•	07
Total					42
Text	 M. Morris Mano, Digital Logic and Computation 2009. R. P. Jain, Modern Digital Electronics, Tata 				
Reference	1. R. J. Tocci, N. S. Wisdmer and G. L. Moss, Pearson Education, 10 th edition, 2011.				•

Course Code	Course name	L	Т	Р	С	Year	Semester
EC104	Semiconductor Devices & Circuits	3	0	0	6	1 st	2 nd

Course objective: The main objective of this course is to study semiconductor materials and transport mechanism, semiconductor diodes, bipolar transistors, field effect devices and transistors. More particularly, the course objectives are to:

- 1. Introduce students to the physics of semiconductors and the inner working of semiconductor devices.
- 2. Provide students the insight useful for understanding new semiconductor devices and technologies.

Topic	Contents	No. of Lectures
Module-I	Introduction of semiconductors, equilibrium and carrier concentration in semiconductors; Bond model and band model of intrinsic semiconductors, Density of state, Fermi-dirac distribution function; Carrier transport in semiconductors, Mobilty, resistivity and conductivity; Excess carrier, method of generating excess carrier inside extrinsic semiconductors. Doping and diffusion process.	08
Module-II	P-N Junction: Simplified device structure and physical operation of diode; depletion region, forward and reverse-bias, depletion and diffusion capacitances, switching characteristics; breakdown mechanisms; Zener diode, Tunnel diode; Diode Applications: Half Wave and Full Wave Rectifier, Clippers and Clampers, and Zener Regulators	09
Module-III	Simplified device structure and physical operation of BJT, I-V characteristics of BJT, carrier distribution; current gain, transit time, secondary effects; SPICE model. Metal-semiconductor junctions, Breakdown of the junction with the non-impact and impact ionization, $\beta\text{-I}_{\text{C}}$ characteristics curve, variation of α with Ic; Small signal equivalent circuit, BJT Amplifiers: Transistor Configuration analysis, Common base, Common emitter and Common collector	08
Module-IV	MOS structure, Energy band diagrams, Flat-band condition and flat-band voltage, Surface accumulation, surface depletion, Threshold condition and threshold voltage, MOS C-V characteristics, MOS Q-V Characteristics.	08
Module-V	Introduction to Field effect transistors, Construction and characteristics of Junction Field effect transistors; N-channel and p-channel JFET characteristics; MOSFETS: Enhancement type and depletion type of MOSFET, Basic Operation and Characteristics; N-channel and P-channel MOSFET characteristics	09
Total	•	42

	1. R. F. Pierret, Semiconductor Device Fundamentals, Pearson Education, 1 st edition,
Text	2006.
	2. B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, Pearson Education, 7 th edition, 2015.
Reference	1. J. Singh, Semiconductor Devices - Basic Principles, John Wiley & Sons Inc., 1 st edition, 2001.

Course Code	Course name	L	T	Р	С	Year	Semester
ME103	Engineering Materials	3	0	0	3	1 st	2 nd
Topic	Conter	No. of Lectures					
Module-I	Introduction: Classification of Relations; Metals & Alloys, Ceram Semiconductors, Atomic Structure Fundamentals of Atomic Structure Bonding in Solids	ics, I	Polyn & I	ners, ntera	Con atom	nposites and ic Bonding,	08
Module-II	Environmental Degradation of mate Thermal and Photo Degradation, Cl Damage.						08
Module-III	Structure of solids: Crystalline Crystallographic directions and phostructures.				•	·	08
Module-IV	Properties of materials: Thermal P Dielectric behaviour, Magnetic Optimal properties.	-					08
Module-V	Materials selection: Material prop parameters, General effects of proces structural, Electronic and Magnetic N	ssing	on p	aram	eter	s, selection of	08
						Total	40
 L.H. Van Vlack, Elements of Materials Science & Engineering, Addison-Wesley Publish Company, New York. V Raghavan, Materials Science & Engineering, Prentice Hall of India Pvt. Ltd., New Delhi. W D Callister, Jr., Materials Science & Engineering – An Introduction, John Willey & Sons, In 					td., New Delhi.		
Reference	New York.			. 9			2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2