Indian Institute of Information Technology Bhagalpur Computer Science and Engineering (CSE)

B.Tech. Course Curricula and Syllabus

Semester-III

Curricula:

Course Code	Course name	L	т	Ρ	С
<u>MA201</u>	Engineering Mathematics III	3	1	0	4
<u>CS203</u>	Object Oriented Programming	3	0	0	3
<u>CS202</u>	Discrete Mathematics	3	1	0	4
<u>CS201</u>	Design and Analysis of Algorithms	3	1	0	4
<u>CS207</u>	Computer Organization and Architecture	3	1	0	4
<u>HS201</u>	Management Concepts and Technology	2	0	0	2
CS211	Object Oriented Programming LAB	0	0	3	2
SAI	Society Internship Program	0	0	0	1

Syllabus:

Course Code	Course name	L	Т	Ρ	С	Year	Semester
MA201	Engineering Mathematics III	3	1	0	4	2 nd	3 rd
Торіс	Conter	nts					No. of Lectures
Module-I	08						
Elementary functions. Anti-derivatives and path (contour) integrals. Cauchy-Goursat Theorem. Cauchy's integral formula, Morera's Module-II Theorem. Liouville's Theorem, Fundamental Theorem of Algebra and Maximum Modulus Principle. Taylor series. Power series. Singularities and Laurent series.						09	
Module-III	Cauchy's Residue Theorem and applications. Mobius transformations; Module-III Partial Differential Equations: First order PDEs; solutions of linear and nonlinear first order PDEs; classification of second-order PDEs.						
Module-IV	Method of characteristics lin PDB problems (Dirichlet and Neumann heat conduction equation, Laplace method of separation of variables; in	E; bo type 's eo itial	ound) invo quati boun	ary olving ons dary	and g wa and value	initial value ve equation, solutions by e problems.	08

Module-V	Solution of PDE by Laplace transform; Fourier series, Fourier integrals; Fourier transforms, sine and cosine transforms; solution of PDE by Fourier transform.	10
	Total	43
Text	 B S Grewal, J S Grewal, J K Dhanoa, <i>Higher Engineering Mater</i> Publishers, 44th edition, 2017. E. Kreyszig, H. Kreyszig, E. J. Norminton, <i>Advanced Engineering</i> Wiley India Pvt. Ltd., 2017 	<i>thematics</i> , Khanna Mathematics, 10 th ,
Reference	 Ian N Sneddon, Elements of Partial Differential Equations, Dover P John H Mathews, Russell W Howell, Complex Ananlysis for Engineering, Jones and Bartlett India Pvt.Ltd, 6th edition, 2011. James Ward Brown, Ruel V Churchill, Complex Variables and McGraw Hill Education, 8th edition, 2016. 	ublications; 2006. Mathematics and Applications, Tata

Course Code	Course Name	L	Т	Ρ	С	Year	Semester
CS203	Object oriented Programming	3	0	0	3	2 nd	3 rd
Course Object	ive: The course is designed to provide stude	ents	with	com	plete	e knowledge of	Object
Oriented. Prog	gramming through C++ and to enhance the	prog	ramr	ning	skill	s of the studen	ts by giving
practical assig	nments to be done in labs. The course also	aims	to p	rovio	de st	udents with re	quisite
knowledge ab	out Object Oriented Programming through	C++ :	so th	at th	ney n	nake their own	
Applications/F	Projects using C++.						
Topic							Hour
	Principles of OOPs, Basics of C++, Functior	is in	c++ :	Basi	c Co	ncepts of	
	OOP, Benefits of OOP, OOP Languages, Ap	plica	tion	s of (DOP.	C++	
	program basics, data types, operators in c	++, s	cope	reso	olutio	on, type cast	6
Module I	operators, operator overloading, operator	. pre	cede	nce.	Mai	n function,	
	function prototyping, call by reference, inl	ine f	unct	ions,	defa	ault	
	arguments, constant arguments, function	over	load	ing, t	frien	d and virtual	
	functions, maths library functions.						
	Classes, objects, constructors and destruct	tors -	– C s	truct	ures	revisited,	
	specifying a class, defining a member func	tion,	priv	ate r	nem	ber	
	functions, memory allocation for objects,	statio	c dat	a me	embe	ers and	
Module II	member functions, array of objects, object	ts as	func	tion	argu	ments,	6
	friendly functions, returning objects, point	ters t	o me	embo	ers, o	constructors,	
	Parametrized constructors, Multiple const	Parametrized constructors, Multiple constructors, Copy constructor,					
	Destructors.						
	Operator overloading, inheritance, virtual	func	tions	s and	l pol	ymorphism –	
	Overloading unary operators, overloading	bina	ry ol	perat	tors,	rules for	
	overloading operators, type conversions. I	Deriv	ed c	lasse	es, sir	ngle	-
Module III	inheritance, multilevel inheritance, multip	le in	herit	ance	e, hie	rarchical	8
inheritance, hybrid inheritance, virtual base classes, abstract						t classes,	
	nesting of classes. Pointers, pointer to obj	ects,	this	poin	ter,	pointer to	
	derived classes, virtual functions, pure virt	ual t	unct	ions			
	Console I/O operations, working with files	and	tem	plate	2S — (.++ streams	0
ivioaule IV	and stream classes, unformatted I/O oper	ation	15, TO	rma	ited		8
	operations, managing output with manipu	ilato	rs. Cl	asse	s for	file stream	

	operations, opening/closing of file, file pointers and their ma error handling during file operation, command line argumen templates, class template with multiple parameters, functio overloading template functions, member function template template arguments.					
Module V	Exception handling and Standard template library – Basics o handling, exception handling mechanism, throwing mechan mechanism, rethrowing exception, specifying exception. Co STL, Containers, Algorithms, Iterators, Application of Contain Functions objects.	6				
		Total	34			
Text	 Object Oriented Programming with C; E Balagurusamy, ; 7th, McGraw Hill Education (India) Pvt. Limited; 2018. The Complete Reference C++ (Indian Edition); Herbert Schildt, ; 4th, McGraw Hill Education (India) Pvt. Limited; 2017. 					
Reference	 The C++ Programming Language; Bjarne Stroustrup Education Services Pvt.Ltd; 2017. 	, ; 3rd, Pearsor	n India			

Course Code	Course Name	L	Т	Ρ	С	Year	Semester			
CS202	Discrete Mathematics	3	1	0	4	2 nd	3 rd			
Course Objective: A	course designed to prepare computer s	cien	ce a	nd e	ngin	eering stude	nts for a			
background in abstr	action, notation and critical thinking for	the	mat	hem	natic	s most direct	ly related to			
computer science.	Topics include: logic, relations, functions	, ba	sic s	et th	eor	y, countabilit	y and counting			
arguments, proof te	echniques, mathematical induction, grap	h th	eory	', CO	mbir	natorics, recu	rsion, recurrence			
relations, elementa	ry number theory and graph theory.						[
Торіс							Hour			
	Set Notations, Basic Operations on a Se	et, Si	ubse	t, Po	owei	· Set,				
	Product of Sets, Partition on a set.									
Module I	Relation: equivalence relation, Closure	s.					9			
inouale i	Functions: composition, injective-bijective functions.									
	Poset, Lattice, Boolean Algebra, and Groups as Algebraic									
	Structures.									
	Propositions and Logical Operators, Ta	utol	ogies	s, lo	gical					
	equivalence of Statements. Normal For	ms	CNF	& D	NF.					
Module II	Predicate Logic, Quantifiers and Nester	d Qu	anti	fiers	•		8			
	Proofs and Logical Inference, Prenex N	orm	al Fo	rm	(PNF	⁻).				
	Induction Based Proofs.									
	Counting: Inclusion and Exclusion Prince	iple	s, Pr	odu	ct ar	id Sum				
	Rules, Permutation and combination, E	Inoi	nial	and	Mu	tinominal				
	Coefficient. Derrangements.									
Module III	Stirling numbers of the 1st and 2nd kind. Bell's Number, Catalan						9			
	Number.									
	Recursion: Solving First and Second or	ler N	lon l	Hom	oge	neous				
	Linear Recurrence Relations.									

	Generating Functions and its application in solving Recu					
	Relations.					
	Number Theory: Division Algorithm, Euclid's Algorithm.					
	Fundamental Theorem of Algebra. Congruence. Solving	Linear				
	Diophantine Equations. Chinese Remainder Theorem.					
Module IV	Graphs, Subgraphs, Graph Representation. Isomorphism	n of graphs.	9			
	Walks, apths, circuits. Eulerian and hamoltonian Paths.					
	Connectedness and Components, Cut Set. Trees, Spann	ing tree in				
	a graph. Shortest Path.					
Module V	Planar Graph: Matching and Bipartite Graph	٩				
	Coloring of a graph	5				
	-	Total	44			
Toxt	1. Discrete Mathematics and its Applications; Kenneth	H Rosen, Kam	nala Krithivasan;			
ΤΕΧΙ	7th, McGraw Hill Education; 2011.					
	1. Discrete Mathematics for Computer Scientists and M	lathematiciar	ns; Joe L Mott,			
	Abraham Kandel, Theodore P Baker; 2nd, Pearson India Education Services Pvt.Ltd;					
Poforonco	2018.					
Reference	2. Discrete Mathematical Structures with Applications to Computer Science; J P					
	Tremblay, R Manohar; McGraw Hill Education; 2016.					

Course Code	Course Name	L	Т	Ρ	С	Year	Semester			
CS201	Design and Analysis of Algorithms	3	1	0	4	2 nd	3 rd			
Course Objective	The objective of this course is to teach	diffe	rent	algo	rithr	n techniques	for effective			
problem solving.	The use of different paradigms of proble	em so	olvin	g wil	l be	used to illustra	ate clever and			
efficient ways to	solve a given problem. In each case emp	hasi	s will	l be j	olace	d on rigorous	ly proving			
correctness of th	e algorithm. In addition, the analysis of t	he a	lgori	thm	will I	pe used to sho	ow the			
efficiency of the	algorithm over the naive techniques.									
Topic							Hour			
	Introduction and Recursion: Algorithm	Phas	es, A	Asym	ptot	ic Notations				
	and Analysis- space and time complexit	y me	easui	res, I	owe	r and upper				
Madula	bounds; Various Algorithm Design Techniques, Pseudo code, Models						7			
Woulden	of Computation- Turing Machine Model and Random Access Machine						/			
	Model. Classification of Recursion, Application of Recursion, Various									
	Solution Methodology for recurrence re	elatio	ons.							
	Divide-and-conquer and Dynamic Prog	ramn	ning:	Bina	ary S	earching,				
Module II	Quick Sort, Merge Sort, Matrix Chain Multiplication Problem,						10			
	Travelling Salesman Problem, Shortest Path Problems.									
Madula III	Greedy Method: 0/1 knapsack Problem	ı, Job	Seq	uene	cing v	with	0			
wodule ili	Deadlines, Minimum Spanning Trees, C)ptim	nal Su	ub-St	truct	ure.	õ			
	Backtracking, Branch and Bound and Lo	wer	Bou	nd T	heor	y: N–				
	Queens Problem, Hamiltonian Cycle Pro	oblei	n, ar	nd G	raph	Coloring				
Module IV	Problem. Backtracking vs Branch and B	Problem. Backtracking vs Branch and Bound, 15-Puzzle Problem. 8					8			
	Computational Model - Comparison Tre	ee, O	racle	es an	d Ad	versary				
	Arguments. Lower Bound for Sorting; S	elect	ion a	algor	ithm	IS.				

Module V	Graph Algorithms and NP completeness: Connectivity, Topological Sort, Shortest Paths Network Flow; Disjoint Set Union Problem; String Matching, Disjoint Set Manipulation, Classification of Problems- Decision Problems, Optimisation Problems, Classification of Algorithms- Deterministic Algorithms, Non-deterministic Algorithms, Classes of Problems- P, NP, NP–Complete, and NP-Hard. Relationship among Classes of Problems, Reducibility, Cook's Theorem, Satisfiability, C-SAT Problem, Clique Decision Problem.						
		lotal	42				
Text	 Introduction to Algorithms; Thomas H Cormen, Charles L Rivest; 3rd, PHI Learning Private Limited; 2018. Design and Analysis of Computer Algorithms; A Aho, J E Addison-Wesley; 1974. 	E Leiserson, E Hopcroft, J E	Ronald)Ullman; ,				
Reference	 Algorithm Design; Jon Kleinberg, Eva Tardos; 14th, Pear Services Pvt.Ltd; 2017. Fundamentals of Computer Algorithms; Ellis Horowitz, S Rajasekaran; 2nd Edition, University Press; 2011. Algorith Design: Foundations, Analysis and internet Exa Tamassia; John Wiley & Sons; 2001. 	rson India Edu Sartaj Sahni, amples; M T G	oodrich, R				

Course Code	Course Name	L	Т	Ρ	С	Year	Semester
CS207	Computer Organization and Architecture	3	1	0	4	2 nd	3 rd
Course Objective: This course will introduce students to the fundamental concepts underlying mode computer organization and architecture. Main objective of the course is to familiarize students about hardware design including logic design, basic structure and behavior of the various functional modu							erlying modern udents about tional modules
of the computer and how they interact to provide the processing needs of the user. It will cover machine level representation of data, instruction sets, computer arithmetic, CPU structure and functions, memory system organization and system input/output devices.							ill cover ire and
Торіс							Hour
Module I	Basic structure of computers: Function concepts, Technologies for building pro Performance measures.	5					
Module II Instruction and Arithmetic for computers: Language of the computer: MIPS instruction set, addressing modes, and assembly language programming. Signed and unsigned numbers, addition, subtraction, multiplication- Booth's Algorithm, integer division- Restoring division and non-restoring division, floating point representation							12
Module III	ule III Processor Design: Single cycle, multi-cycle, pipelined processor design.						
Module IV	Memory architecture: Basic Concepts, External Memory, Virtual Memory, Re	Maiı ad-O	n Me nly N	emor Nem	'y, In ∣ory,	ternal and Cache	8

	Memory – basics of Caches (direct, set-associative, mult							
	associative), measuring and Improving Cache Performar							
	Input–Output Design: Basic Concepts, Programmed I/O,							
Module V	Driven I/O, Direct Memory Access (DMA), Buses, Input-	Output	8					
	Interfaces.							
		Total	41					
	1. D. A. Patterson and J. L. Hennessy, Computer Organization and Design, 5th							
Toxt	Ed., Morgan Kaufmann, 2017.							
TEXL	2. W. Stallings, Computer Organization and Architecture: Designing for							
	Performance, 8th Ed., Pearson Education India. 2010.							
Reference	Reference 1. V. C. Hamacher, Z. G. Vranesic and S. G. Zaky, Computer Organization, 5th Ed., McGraw Hill, 2017. 2. David Money Harris and Sarah L. Harris, Digital Design and Computer Architecture, second edition, Morgan Kaufmann, 2017.							

Course Code	Course name	L	Т	Ρ	С	Year	Semester	
HS201	Management Concepts and Technology	2	0	0	2	2 nd	3 rd	
Торіс	Conter	nts					No. of Lectures	
Module-I	Module-I Principles of Management: Concept of Management, Functions of Management, Planning and its Nature &Organising, Designing organizational Structure, Authority relationships							
Module-II	Module-II Delegation of Authority. Staffing: Motivation and its Theory, Leadership Communication. Directing, Controlling & its techniques. Coordinating; Principles of Economic: Microeconomics: Concept of consumption, production, exchange, distribution.							
Module-III	Module-III Demand analysis: Concept, kind of demand, change in demand, law of demand; Utility analysis: Marginal, total, consumer surplus, consumer equilibrium; Production analysis: Law of supply, different factors of production law of returns, economies of scale						06	
Module-IV	Cost analysis: Cost concept, impor classification; Pricing analysis: Differ equilibrium in different markets - per	rtanc ent rfect,	e of kinds imp	cost of n erfec	t bel narke t, mo	naviour, cost ets, pricing & onopoly.	05	
Module-V	 Income distribution: Briefing them about rent, wages, interest and profit. The international economics: Changing scenario, globalization, structural adjustment programme, stabilization policy, the multinational corporation. IBRD, IMF, GATT, WTO, ITO, IDA, IFC, MIGA. 						05	
						Total	25	
Text	 Business Organisation& Manager Essentials of Management - Harc An introduction to Positive Econo Modern Microeconomics; A. Kou 	ment old Ko omic: itsoy	: - C.F pontz s; Lip ianni:	R Bas , Hei sey. s.	u. ngW	erhrich.		

5.	Managerial Economics - Analysis, Problems and Cases; P.L. Mehta.
6.	Business Economics; ManabAdhikary.