भारतीय सूचना प्रौद्योगिकी संस्थान भागलपुर INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHAGALPUR

An Institute of National Importance Under Act of Parliament

2nd Meeting of Board of Academic Programs

for

M.Tech in Electric Vehicle Technology

Dept. of Mechatronics Engineering (MEA)

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHAGALPUR Dept. of Mechatronics Engineering (MEA)

M. Tech.

in

Electric Vehicle Technology

Curriculum

Code	Course Name	L	Т	P	С							
1 st Semester												
MEA501	Hybrid and Electric Vehicle	3	1	0	4							
MEA502	Dynamics and Control of Electric Vehicle	3	0	0	3							
MEA503	Automation in Electric Vehicle	3	0	0	3							
MEA504	Battery and Charging Technology in EV	3	0	0	3							
	Elective -I	3	0	0	3							
MEA531	Automation Lab	0	0	3	2							
MEA532	Simulation LAB	0	0	3	2							
MEA581	Capstone Project – I	0	0	0	1							
Total Semester Credits												
	2 nd Semester											
CS504	Machine Learning	3	0	0	3							
MEA505	Electrical Drive	3	1	0	4							
MEA506	Battery Management System	3	0	0	3							
	Elective -II	3	0	0	3							
	Elective -III	3	0	0	3							
CS533	Machine Learning Lab	0	0	3	2							
MEA533	Battery Management Lab	0	0	3	2							
MEA582	Capstone Project – II	0	0	0	1							
	Total Semester	· Cı	edi	ts	21							
	3 rd Semester											
MEA591	Major Project-I	0	0	0	10							
	4 th Semester											
MEA592	Major Project-II	0	0	0	14							
	Total Program	Cr	edi	ts	66							

Elective Courses

Code	Course Name	L-T-P-C
MEA551	Finite Element Method	3-0-0-3
MEA552	Modelling and Analysis of Electric Machines	3-0-0-3
MEA553	Computational Fluid Dynamics	3-0-0-3
MEA554	Computer Integrated Manufacturing	3-0-0-3
MEA555	CAD for Electric Vehicle	3-0-0-3
CS502	Artificial Intelligence	3-0-0-3
MA503	Probability and Stochastic Processes	3-0-0-3
EC553	Introduction to IoT	3-0-0-3
EC503	Computational Intelligence	3-0-0-3

<u>Syllabus</u>

Course Code	Course name	L	Т	Р	С	Year	Semester
MEA501	Hybrid and Electric Vehicle	3	1	0	4	1 st	1 st
Topic	Content	No. of Lectures					
Module-I	Introduction to Vehicle Propulsion and Powertrain Technologies: History of Vehicle Development, Internal Combustion Engine Vehicles (ICEVs), Vehicles with Alternative Fuels, Powertrain Technologies, Transmission Systems, Drivetrain and Differentials. Electric and Hybrid Powertrain Technologies: Introduction, Battery Electric Vehicles (PEVs), Evel Cell Electric Vehicles (ECEVs)						10
Module-II	 Hybrid Electric Vehicles, Plug-in Hybrid Electric Vehicles (PHEVs), Hybrid Hydraulic Vehicles (HHVs), Pneumatic Hybrid Vehicles (PHVs), Power/Energy Management Systems. Body and Chassis Technologies and Design: Introduction, General Configuration of Automobiles, Body and Chassis Fundamentals, Different Tunes of Structural Systems. 						10
Module-III	Body and Chassis Materials, Specifi Chassis Design of Electric and Hybrid E of Electric and Hybrid Electric Vehicles	8					
Module-IV	Vehicle Dynamics Fundamentals: Con Kinematics, Tire Mechanics and Characteristics, Electric Motor Performa	ncept Moo ince (s and deling Chara	Terr g, IO cteris	ninol CE tics,	ogy, Vehicle Performance	10
Module-V	Battery Performance Characteristics, Characteristics, Regenerative Braking C Powertrains Components: Case Stu Battery Vehicles, Hybrid Vehicles, Fuel	10					
	r			Tot	al No	o. of Lectures	48
Text	 A. Khajepour, S. Fallah and A. Goodarji, "Electric and Hybrid Vehicles, T modeling and control: A mechatronic approach", 1st edition, Willey, 2014. J. Larminie and J. Lowry, "Electric vehicle technology explained", 2nd edition 						cles, Technologies, , 2014. 2 nd edition, Wiley,
Reference	1. R.N. Jazar, "Vehicle Dynamics: Theory and Application", New York: Springer, 201					x: Springer, 2017.	

Course Code	Course name	L	Т	Р	С	Year	Semester
MEA502	Dynamics and Control of Electrical Vehicle	3	0	0	3	1^{st}	1 st
Topic	Conten	No. of Lectures					
Module-I	Fundamentals of Vehicle Dynamics; Design of Transmission Systems for EVs; Modeling and Analysis of suspension systems; braking and steering systems for EVs					8	

Module-II	Stability and Control of EVs; Vehicle Ride; Tire forces and tire modelling of EVs; BEV/ Hybrid System Engineering, System Engineering, SIL, HIL, Component Sizing and Data Analytics, Software & Hardware Control Strategy, EV/ Architecture (HV, LV and CAN)	8
Module-III	Functional Safety standard–ISO 26262, Software Validation and Quality; Design and Integration, Vehicle ECU Programming, Mounting and Installation, Thermal Management; Wiring Harness and Architecture, Harness Architecture and Simulation Tools	8
Module-IV	HV Harness Design, including Connectors, Fuses, Relays and Sensors, LV Harness design, Intra Vehicle Network Design, EMI / EMC compliance; Energy management within the power train architecture	8
Module-V	Controllers in EVs, Axle translational controls, gearbox controllers; SW architecture and AUTOSAR; NVH in electric vehicle; Safety systems, FDSS, Isolation monitoring, HVIL; junction boxes, contactors, relays, fuses: selection, design, component sizing; issues in operating HV contactors – pre-charge circuits, diagnostics,	8
	Total No. of Lectures	40
Text	 H.Du, D. Cao and H. Zhang, "Modeling, Dynamics, and Cont Vehicles, Woodhead Publishing, 1st edition, 2017 P. Wach, Dynamics and control of Electrical Drive, 2011 	trol of Electrified
Reference	 M. Ehsani, Y.Gao, S.E. Gay and E. Ali, Modern Electric, Hybrid Cell Vehicle Fundamentals, Theory and Design, CRC press, 1st edition W. Liu, "Hybrid Electric Vehicle System Modeling and Control", 2017 	<i>Electric and Fuel</i> on, 2005 2 nd edition, Willey,

Course Code	Course name	L	Т	Р	С	Semester
MEA503	Automation in Electric Vehicle	3	0	0	3	1 st
Торіс	Contents	No. of Lectures				
Module-I	Automotive Embedded System Technology: Overvie System Categories, Various Embedded Sub Systems like Driveline, Engine, Fuel, Emission, Brakes, Suspension, E Suspension, Doors, Safety & Security, Comfort Communication & Lighting and Future Trends in Autom Systems: X -by - Wire technologies. Concept to Marke Automotive Product Design Cycle, Microcontroller, archi- map, I/O map, Building Blocks of Automotive Ele Actuators, Sensors, Semiconductor Components, Dev Circuits (ICs), Relay, Stepper motor, PCBs etc.	w of e Ch Emiss & notive et: U: itectu ectror vices	f Em assis, ion, Mult e Em nders ure, M nic F , Int	bedd Brake imed bedd tandi Aemo Produ egrat	ed ly, es, ia, ed ng ory ct: ed	08
Module-II	Structure of embedded programme, infinite loop, and comp locating, downloading and debugging, Intra processor Protocols: I2C & I2S, SPI & USB, LIN and CAN. Codin Guidelines: MISHRA C & Automotive Operating Syste AUTOSAR.	08				
Module-III	Sensors : Introduction, Basic Sensor Arrangement, Ty Oxygen Sensor, Cranking Sensor, Position Sensor, Eng Sensor, Linear and Angle Sensor, Flow Sensor, Temperatu Sensor, Gas Sensor, Speed and Acceleration Sensor, Knoc	08				

	Sensor, Yaw Rate Sensors, Tire Pressure Sensor, Actuators. signal conditioning.					
Module-IV	An Introduction to Internet-of-Things, architectural overview, main design principles and needed capabilities, An IoT architecture outline, standards considerations, M2M and IoT Technology fundamentals Basics of Networking; Communication Protocols, Sensor Networks, Machine to-Machine Communications, Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination.	08				
Module-V	Sensor Technology, RFID Technology, WPAN Technologies for IoT/ M2M, Cellular and mobile network technologies for IoT/ M2M CoAP, REST, Zigbee, Bluetooth, transport and session layer protocols – TCP, MPTCP, UDP, DCCP, HTTP, CoAP, XMPP, AMQP, MQTT.	08				
	Total No. of Lectures	40				
Text	 Text M. Staron, "Automotive Software Architectures: An Introduction", Springer, 1st edition, 2017. Dieter U, M Harrison and M. Florian, "Architecture the Internet of Things, Springer., 2011 T. Denton, "Automotive Electrical and Electronic Systems", Taylor and Francis. 5th edition, 2017. 					
References:	 N. Navet and F. Simonot-Lion, "Automotive Embedded Systems Handboo 1st edition, 2009. R.K.Jurgen, "Distributed Automotive Embedded Systems", SAE Internationa 3. R. Bosch, "Automotive Hand Book", SAE, 5th edition, 2000. 	<i>k"</i> , CRC Press, al, 2007.				

Course Code	Course name	L	Т	Р	С	Year	Semester
MEA504	Battery and Charging Technology in EV	3	0	0	3	1 st	1 st
Торіс	Conten	ts					No. of Lectures
Module-I	Selected energy storage devices and c applications in electric vehicles, energy requirement of vehicles, sizing of energy	8					
Module-II	Types of batteries Li-Ion, Metal Air Bat Zinc air battery, fuel cells, supercapacito	8					
Module-III	Fundamental of Battery pack design: Me Design, Electrical Design	8					
Module-IV	Charging Infrastructure, Battery Charging : Types of chargers slow and fast, Battery Swapping, Standardization and On board Chargers, public chargers, bulk chargers, swap stations, economics of public chargers.						8

Module-V	Difference between charging station and charging point; Inductive charging, Flash Charging; Charger protocols, OCPP, V2G, CHADEMO, Bharat Charger; Impact of charging on grid; Renewable energy integration to chargers; Application of IoT to charging infrastructure.	8					
	Total No. of Lectures	40					
Text	ext 1. S. Dhameja, " <i>Electric Vehicle Battery Systems</i> , Newnes", 1 st edition, 2001. 2. J. G. Hayes and A. Goodarzi, " <i>Electric Powertrain - Energy Systems, Power electronics and drives for Hybrid electric and fuel cell vehicles</i> " Wiley 1 st edition 2018						
Reference	 B. Scrosati, J. Garche and W. Tillmetz, "Advances in Battery Technologi Vehicle", Woodhead, 1st edition, 2015. K. T. Chau, "Energy Systems for Electric and Hybrid Vehicles", The Inst Engineering and Technology, 2016 	<i>es for Electric</i> itution of					

Course Code	Course Name	L	Т	Р	С	Year	Semester		
CS504	Machine Learning	3	0	0	3	1 st	2nd		
Tonic	Content		•				No. of		
ropic									
Module I	Introduction: History of machine learnin	ng, E	Basic	cond	cepts		5		
Supervised learning:Supervised learning setup, LMS, Logistic regression, Perceptron, Backpropagation, neural networks, Exponential family, Generative learning algorithms, Gaussian discriminant analysis, Naive Bayes, Support vector machines, Model selection and feature selection, Ensemble methods: Bagging, 							10		
Module III	Learning theory: Bias/variance trade-of VC dimension, Worst case (online) lear	f, Uı ning	nion	and	Cher	noff/Hoeffding bounds,	8		
Module IV	Unsupervised learning: Clustering K-m analysis, PCA (Principal components analysis).	neans analy	s, EN ysis),	A. M. ICA	lixtu A (In	e of Gaussians, Factor dependent components	9		
Module V	Miscellaneous topics: Hypothesis testin Analysis, adaptive hierarchical clusterin	g, cr Ig, gi	oss-v radie	valida nt bo	ation postir	, quadratic discriminant ng.	8		
						Total No. of Lectures	40		
Text	Text1. Ethem Alpaydin, "Introduction to Machine Learning", PHI, Third Edition, 2. Marsland, Stephen. "Machine learning: an algorithmic perspective", C Hall/CRC, 2nd edition, 2014. 3. Tom Mitchell, "Machine Learning", McGraw Hill, First edition 2017.								
Reference	 1. Murphy, Kevin, "Machine Learning: A Probabilistic Perspective (A Computation and Machine Learning series)", The MIT Press; Illustrated edition, 2017. 2. Müller, Andreas C., and Sarah Guido, "Introduction to machine learning with Py guide for data scientists", O'Reilly, 1st edition, 2016. 								

Course Code	Course name	L	Т	Р	С	Year	Semester
MEA505	Electrical Drive	3	0	0	3	1 st	2 nd
Topic	Conten	No. of Lectures					
Module-I	Fundamental of Electrical Drive Introduction of Electric Drives, Dyr Quadrant Operation, elements of drive s for selection of drive components, E equalization, Characteristic of DC Moto	namic ysten quiva r.	es of n, driv alent	Ele ve cha drive	ctric aracte para	Drives, Four eristics, criteria ameters, Load	8
Module-II	 DC and AC Drives Motor load dynamics, starting, braking & speed control of dc and ac motors. DC drives: converter and chopper control. AC Drives: Operation of induction and synchronous motors from voltage and current inverters, slip power recovery, pump drives using ac line controller and self-controlled synchronous motor drives. 					8	
Module-III	Advance Electric DrivesIntroduction, Principle of operation of the chopper, Chopper controlled drives, Duty-ratio control, current-limit control, steady state analysis, four quadrant chopper circuit, chopper for inversion/other power devices, mode & input to the chopper, power factor and ripples in motor current Chopper control of separately excited DC motor and DC series motor.					8	
Module-IV	DC to AC Converter: Classification of inverter, Single phase and three phase inverters operation using BJTs and MOS devices for VSI and CSI, Basic concept of PWM controlled inverter (for AC drives).AC to AC Converter: AC voltage controllers. Single and three-phase Cycloconverter circuits, blocked group operation, circulating current mode operation (for AC drives).						8
Module-V	CONTROL OF DRIVES performance and stability of variable speed dc, control of effective rotor resistance, recovery of slip energy, variable frequency control of ac motors, Application: ON-Line & OFF-line UPS, SMPS, Electronic Ballast,						8
				Tot	al No	o. of Lectures	40
Text	Text1. G. K. Dubey, "Fundamentals of Electrical Drives", Narosa, 2 nd edit2. W. Shepherd, D. T. W. Liang and L.N. Hulley, "Power Elec Control", Cambridge Univ. Press, 2 nd edition, 2012						on, 2010 ronics and Motor
Reference	1. N. Mohan, "Power electronic edition, 2003.	s: cc	nvert	ers,	appli	cations, and d	esign", Wiley, 3 rd

Course Code	Course name	L	Т	Р	С	Year	Semester
MEA506	Battery Management System	3	0	0	3	1 st	1st
Торіс	Conten	ts					No. of Lectures
Module-I	Battery Management system: Introdu Cells & Batteries, Nominal voltage an power, Cells connected in series, Electrochemical and lithium-ion cells, Discharging Process, Overcharge and U	8					
Module-II	Battery Management System Require Introduction and BMS functionality, Sensing, Temperature Sensing, Curren High-voltage contactor control, Isola Protection, Communication Interface, Re	8					
Module-III	Battery State of Charge and State of Health Estimation, Cell Balancing: Battery state of charge estimation (SoC), voltage-based methods to estimate SoC, Model-based state estimation, Battery Health Estimation, Lithium-ion aging: Negative electrode, Positive electrode, Cell Balancing, Causes of imbalance, Circuits for balancing						8
Module-IV	Modelling and Simulation: Equivalent-circuit models (ECMs), Empirical modelling approach, Phys Simulating an electric vehicle, Vehicl constant power and voltage, Simulating	8					
Module-V	Design of BMS: Design principles of battery BMS, Effe battery life and BMS, energy balancing	ct of with 1	dista multi-	nce, l batte	oad, ry sys	and force on stem	8
				Tot	al No	o. of Lectures	40
Text	 V. Pop, H.J. Bergveld, D. Danilov, P. systems: Accurate state-of-charge indica Science & Business Media, Vol. 9. 2008 H.J. Bergveld, W.S Kruijt., P.H.L No Modelling", Philips Research Book Ser X. Rui, "Battery Management Algorit K. T. Chau, "Energy Systems for Elec Engineering and Technology, 2016 	y management as" Springer -Design by edia, 2002. 1 st edition, 2020 ution of					
Reference	 G. L. Plett, "Battery management syst G L Plett, "Battery management syste 2015. 	ch House, 2015. ls", Artech House,					

ELECTIVES (I, II, III) Syllabus

Course Code	Course name	L	Т	Р	С	Year	Semester	
MEA551	Finite Element Method	3	0	0	3	1st		
Topic	Content	ts					No. of Lectures	
Module-I	Introduction: Historical background, b method, solving of axial load problem, b	6						
Module-II	Variational methods: calculus of varia obtaining the variational form from a c virtual work, Ritz method, Galerkin collocation method, sub domain method methods.	8						
Module-III	Analysis of 1-D problems: formulation by different approaches (direct, potential energy and Galerkin); Derivation of elemental equations and their assembly, solution and its post processing. Applications in heat transfer, fluid mechanics and solid mechanics. Bending of beams, analysis of truss and frame						10	
Module-IV	Analysis of 2-D problems: finite elemproblems, triangular and rectangular transfer, fluid mechanics and solid mech	nent 1 elem anics	nodel ents;	ling App	of sin licati	ngle variable ons in heat	8	
Module-V	Numerical considerations: Numerical refinement. Plane stress and plane strait Bending of plates, Eigen value and time about preprocessors,	alysis, mesh at estimation, s; Discussion	8					
				Tot	al No	o. of Lectures	40	
Text	 U. S. Dixit, "Finite Element Method for Engineers", Cengage learning India Pvt. Ltd, 2018 J. N. Reddy, "An introduction to the Finite Element Method, McGraw-Hill", 3rd edition, 2006. R. D. Cook, D. S. Malkus and M. E. Plesha, "Concepts and Applications of Finite Element Analysis", Wiley, 4th edition, 2007. 							
Reference	 T. J. R. Hughes, "<i>The Finite Element Method</i>", Prentice-Hall, 1986. O. C. Zienkiewicz and R. L. Taylor, "<i>The Finite Element Method</i>, Butterworth-Heinemann", 7th edition, 2013. 							

Course Code	Course name	L	Т	Р	С	Year	Semester
MEA552	Modelling and Analysis of Electric Machines	3	0	0	3	1 st	
Topic	Conten	No. of Lectures					
Module-I	Basics of magnetic circuits, Analysis of and permanent magnets, Analysis of systems with linear magnetics, Nonlinear energy principles.	8					

Module-II	Inductances of distributed windings - salient pole, cylindrical rotor, Analysis of the doubly excited two-phase rotational system, Reference frames power invariance and non-power invariance.	8
Module-III	Derivation of dc machine systems from the generalized machine, Analysis of induction machine - synchronous reference frame - with currents as variables - with rotor flux as variables.	8
Module-IV	Basis for vector control - small signal modelling of induction machine, V/F Control, Analysis of the alternator - synchronous reference frame.	8
Module-V	Derivation of salient and cylindrical rotor machine phasor diagrams, Three phase short circuit of alternator and various time constants.	8
	Total No. of Lectures	40
Text	 A. E. Fitzgerald, C. Kingsley, Jr., S. D. Umans, "Electric Machinery 1 edition, 2013. D. Kelly, and S. Simmons, "Introduction to Generalized Machine Theory" 1968. 	McGraw- Hill, 6 th . McGraw-Hill,
Reference	1. S. J. Chapman, "Electric Machinery Fundamentals, McGraw-Hill",	5 th edition, 2011.

Course Code	Course name	L	Т	Р	С	Year	Semester	
MEA553	Computational Fluid Dynamics	3	0	0	3	1 st		
Торіс	Conten	ts					No. of Lectures	
Module-I Module-II	 Basic equations of Fluid Dynamics: General form of a conservation law; Equation of mass conservation; Conservation law of momentum; Conservation equation of energy. The dynamic levels of approximation. Mathematical nature of PDEs and flow equations. Basic Discretization techniques: Finite Difference Method (FDM); Analysis and Application of Numerical Schemes: Consistency; Stability; Convergence; Fourier or von Neumann stability analysis; Modified equation: Application of EDM to wave Heat Laplace and Burgers 							
Module-III	equations. Integration methods for systems of ODEs: Linear multi-step methods; Predictor-corrector schemes; ADI methods; The Runge-Kutta schemes. Vorticity-stream function formulation							
Module-IV	Incompressible Navier-Stokes equati equations using MAC algorithm. The Fi conservative discretization. Numerical flow	08						

Module-V	Formulation of Navier-Stokes equations: Primitive variable formulation; Pressure correction techniques like SIMPLE, SIMPLER and SIMPLEC; Brief introduction to compressible flows and numerical schemes – quick idea of Euler equations, homogenity and flux jacobian. Introduction to upwind schemes.	08
	Total No. of Lectures	42
Text	 J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, "Computational F and Heat Transfer", CRC Press, 3rd edition2011. J. D. Anderson Jr., "Computational Fluid Dynamics, McGraw-Hill Inte Edition", 2017. S.V. Patankar, "Numerical Heat Transfer and Fluid Flow", Hemisphe J. H. Ferziger and M. Peric, "Computational Methods for Fluid Dyname edition, 2002. 	<i>Fluid Mechanics</i> ernational re, 2017. <i>nics</i> ", Springer, 3 rd
Reference	 1. T. J. Chung, "Computational Fluid Dynamics", Cambridge University F 2. C. A. J. Fletcher, "Computational Techniques for Fluid Dynamics", Spring 1998. 	Press, 2010. ger, Vol. 1 and 2,

Course Code	Course name	L	Т	Р	С	Year	Semester			
MEA554	Computer Integrated Manufacturing	3	0	0	3	1 st				
Торіс	Topic Contents									
Module-I	Manufacturing Process: Introduction to CAD and CAM, Manufacturing Planning and control, CIM concepts, Computerized elements of CIM system, Types of manufacturing, Manufacturing models, Manufacturing Control									
Module-II	Elements of Automation: Review of Material Handling technologies. Data Co Data Acquisition technologies. Database	12								
Module-III	Various Manufacturing Systems: Manufacturing Systems, Flexible Man Analysis, Transfer lines, Machine cell des	8								
Module-IV	Process Planning: Automated Assembl Computer-Aided Process Planning. O Planning and Control Systems.	6								
Module-V	Integrated manufacturingLevels of Automation, Lean and AgileIule-VManufacturing. Web-based manufacturing.									
	·				To	tal No. of Lectures	40			
Text1. M. P. Groover, "Automation production systems, and computer-integrated manufacturing", Prentice-Hall of India, 2 nd edition, 2001.										

	2. I. Zaid, Mastering CAD/CAM, McGraw-Hill Education, 2 nd edition, 2006									
	3. P. Radhakrishnan, S. Subramanyan.and V.Raju, " <i>CAD/CAM/CIM</i> ", New Age International (P) Ltd, 2 nd edition, 2000.									
Reference	1. S.K.Vajpayee, "Principles of computer-integrated manufacturing", Prentice-Hall of India, 2005.									

Course Code	Course name	L	Т	Р	С	Year	Semester	
MEA555	CAD for Electric Vehicle	3	0	0	3	1 st		
Торіс	Content	ts			1		No. of Lectures	
Module-I	le-I Concept of computer aided design and optimization: Introduction; Computer Aided Design; Explanation of details of flow chart; Input data to be fed into the program; Applicable constraints Max or Minimum permissible limits; Various objective parameters for optimization in an electrical machine; Selection of optimal design; Explanation of lowest cost and significance of "Kg/KVA"; Flowcharts							
Module-II	Geometry Modelling: Representation of curve- B-spline curves-rational curves-T surface patch- Coons and bicubic patch Solid modeling techniques- CSG ar removal algorithms – shading – colouring	8						
Module-III	Modes of heat dissipation ; Standard Ventilation in rotating machines; Quant enclosures; General design procedure Application of finite element method in	8						
Module-IV	CAD of DC Machines Introduction; Flowcharts and programs machines. 2D FEM open source softwar	for co e-bas	ompu ed D	ter ai C ma	ded c	lesign of DC part design	8	
Module-V	CAD of Induction Motor: Introduction; Flowcharts and programs for computer aided design of Induction motor, 2D FEM open source software-based Induction motor part design COMPUTER AIDED DESIGN OF BLDC, SRM and PMSM motors						8	
				Tota	l No	of Lectures	40	
Text	 K M Vishnu Murthy, "Computer aided design of electrical machines", B S Publications, 1st edition, 2008 Dr. M. Ramamoorthy. "Computer- Aided Design of Electrical Equipment", Affiliated East West press Pvt. Ltd., 2011 C.G. Veinott, "Computer aided design of FHP motors", McGraw Hill Pub. Co K. T. Chau, "Electric Vehicle Machines and Drives: Design, Analysis and Application", Wiley 2015 							

Reference	 S.J Salon, "<i>Finite Element Analysis of Electrical Machine</i>", Springer, YesDEE publishers, Indian reprint, 2007. N. Bianchi, "<i>Electrical Machine Analysis using Finite Elements</i>", CRC Taylor & Francis, 1st edition, 2005
	3. A.Saxena and B. Sahay, Computer Aided Engineering Design , Springer, 1st edition, 2005

Course Code	Course name	L	Т	Р	C	Year	Semester			
CS502	Artificial Intelligence30031st									
Торіс	Contents									
Module-I	Pundamental issues in intelligent systems: History of artificial intelligence; philosophical questions; fundamental definitions; modeling the world; the role of heuristics.									
Module-II	Search and constraint satisfaction: Profirst search; two-player games; constra	10								
Module-III	Knowledge representation and reasoning: Formal methods (propositional, predicate logic, first order logic), resolution and unification; Informal methods (frames, scripts), answer extraction; knowledge based systems; logic programming, User interface: Human Computer Interaction, User Interface Components, modules of user interface.									
Module-IV	AI planning systems: Definition and e as search; operator-based plannin algorithms.	xamp g; p	oles of ropos	f plan itiona	ning I pl	systems; planning anning; planning	8			
Module-V	Reasoning under Uncertainty and Learning: probabilistic reasoning; Bayes theorem; Introduction to neural networks and reinforcement learning; Case based reasoning, analytical reasoning, model based reasoning,									
						Total	40			
Text	 Stuart Russell and Peter Norvig, "Artifical Intelligence: A Modern Pearson; 4th Edition, 2020. Elaine Rich, Kevin Knight and Shivashankar B Nair, "Artificial Intellig McGraw Hill, 3rd Edition 2017. R.B. Mishra, "Artificial Intelligence", PHI Learning Pvt. Ltd., 1st edition 									
Reference	 N. J. Nilsson, "Principles of Art Clocksin & Mellish, "Programn 	tificia ning i	l Intel n PR(lligen OLOC	ce", 1 3", N	Narosa Publishing Ho arosa Publ. House, 20	ouse, 2002. 002			

Course Code	Course name	L	Т	Р	С	Semester		
MA503	Probability and Stochastic Processes	3	0	0	3			
Торіс	Contents			<u> </u>		No. of Lectures		
Module-I	Axiomatic definitions of probability; conditional pro and Bayes theorem, continuity property of probabiliti	8						
Module-II	Random variable: probability, density and mass fur random variable; expectation, characteristic, an functions; Chebyshev, Markov and Chernoff bounds;	8						
Module-III	Jointly distributed random variables: joint distribution and densityIIIJuint distributions, joint moments, conditional distributions and expectations,functions of random variables; random vector- mean vector and covariancematrix, Gaussian random vectors; Sequence of random variables: almostsure and mean-square convergences, convergences in probability and indistribution, laws of large numbers, central limit theorem;							
Module-IV	Random process: probabilistic structure of a ra autocorrelation and autocovariance functions; stati stationary and wide-sense stationary (WSS) process ergodicity; spectral representation of a real WSS density, cross-power spectral density,	8						
Module-V	Linear time-invariant systems with WSS process a frequency domain analyses; examples of random p Gaussian, Poisson and Markov processes.	8						
		Total	l No. c	of Leo	tures	40		
Text	 H. Stark and J. W. Woods, <i>Probability and Rando</i> <i>Processing</i>, Pearson, 3rd Edition, 2002. A. Papoulis and S. U. Pillai, <i>Probability, Rando</i> McGraw-Hill, 4th Edition, 2017. 	om Pro	ocesse vriable	s with rs and	n Applica l Stocha	ations to Signal estic Processes,		
Reference	 B. Hajek, An Exploration of Random Process Press, 2015. Sheldon M Ross, Stochastic Processes, Wiley 	ses for y , 2 nd	r Engi Ed, 20	<i>neers</i> 016.	, Cambr	idge University		

Course Code	Course name	L	T	Р	C	Semester				
EC553	Introduction to IoT	3								
Торіс	Contents	No. of Lectures								
Module-I	An Introduction to Internet-of-Things, architectur design principles and needed capabilities, An IoT a standards considerations, M2M and IoT Technology	8								
Module-II	State of art, reference model and architecture, IoT reference architecture, functional view, Deployment and Operational view, other relevant architectural views.									
Module-III	Sensing, transducers classification, Actuation, Smar Networking; Communication Protocols, Sensor Net Machine Communications, Wireless medium ac protocol survey, Survey routing protocols, Sensor d discovery, Data aggregation & dissemination.	8								
Module-IV	Sensor Technology, RFID Technology, WPAN Technologies for IoT/ M2M, Cellular and mobile network technologies for IoT/ M2M CoAP, REST, Zigbee, Bluetooth, transport and session layer protocols – TCP, MPTCP, UDP, DCCP, HTTP, CoAP, XMPP, AMQP, MQTT									
Module-V	Developing IoTs, Introduction to Python, Introduction to different IoT tools, developing applications through IoT tools, developing sensor- based application through embedded system platform, Integration of Sensors and Actuators with Arduino, Implementing IoT concepts with python; Domain specific applications of IoT: Home automation, Industry applications, Surveillance applications, other IoT applications.									
	Т	otal N	o. of	Lectur	res	40				
 Text I. J. Holler, V. Tsiatsis, C. Mulligan, S. Avesand, S. Karnouskos, D. Boyle, <i>H</i> Machine-to-Machine to the Internet of Things: Introduction to a New Ag Intelligence, Academic Press, 1st edition, 2014. 2. A. Bahga, V. Madisetti, Internet of Things: A Hands-on Approach, Universe Press, 1st edition, 2015. 3. P. Raj, Anupama C. Raman, The Internet of Things: Enabling Technolo Platforms, and Use Cases, CRC Press, 1st edition, 2017. 1. O. Hersent, D. Boswarthick, O. Elloumi, The Internet of Things: Key Application 										
Reference	 and Protocols, Wiley Press, 2nd edition, 2012. D. Uckelmann, M. Harrison, F. Michahelles, A Springer, 1st edition, 2011. 	Archite	ecting	the I	ntern	et of Things,				

Course Code	Course name	L	Т	P	C	Semester
EC503	Computational Intelligence	3	0	0	3	
Торіс	Contents					No. of Lectures
Module-I	Introduction to Computational Intelligence: Intelligence machines, Computational intelligence paradigms, Soft computing constituents and conventional Artificial intelligence, Neuro-Fuzzy and soft computing characteristics					7
Module-II	Rule-Based Expert Systems and Fuzzy Expert Systems: Rule-based expert systems, Uncertainty management, Fuzzy sets and operations of fuzzy sets, Fuzzy rules and fuzzy inference, Fuzzy expert systems, Case study: fuzzy logic controller for various applications					9
Module-III	Artificial Neural Networks: Fundamental neuro-computing concepts: artificial neurons, activation functions, Neural network architectures, learning rules, Supervised learning neural networks: multi-layer feed forward neural networks, simple recurrent neural networks, time delay neural networks, supervised learning algorithms, Back propagation algorithm, Radial basis function networks Unsupervised learning neural networks, self-organizing feature maps, Deep neural networks and learning algorithms					9
Module-IV	Evolutionary techniques : Genetic Algorithm, Evolutionary computation: Chromosomes, fitness functions, and selection mechanisms, Genetic algorithms: crossover and mutation, Genetic programming, Evolution strategies, PSO, ACO, BFO					9
Module-V	Hybrid Intelligent Systems: Neural expert system, neuro-fuzzy systems, Evolutionary neural network, case study of Neuro-fuzzy based systems.					7
Total No. of Lectures						40
Text	 S. Rajasekaran, G. A. Vijayalaksmi Pai, Neutral Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications, PHI Learning, 2nd edition, 2017. J. S. R. Jng, C. T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing, Pearson Education, 1st edition, 2015. S. N. Deepa, S. N. Sivanandam, Principles of Soft Computing, John Wiley, 3rd edition, 2018. 					
Reference	 Timothy J. Ross, <i>Fuzzy logic with Engineering Applications</i>, McGraw-Hill, 2 edition,2011. Simon Haykin, <i>Neural Networks: A Comprehensive Foundation</i>, Pearson, 3rd edition, 2009. 					raw-Hill, 3 rd n, 3 rd edition,