भारतीय सूचना प्रौद्योगिकी संस्थान भागलपुर INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHAGALPUR

An Institute of National Importance Under Act of Parliament

2nd Meeting of Board of Academic Programs

for

M.Tech in Signal Processing and Machine Learning

Dept. of Electronics and Communication Engineering (ECE)

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHAGALPUR Dept. of Electronics and Communication Engineering (ECE)

M. Tech.

in

Signal Processing and Machine Learning

Curriculum

Code	Course Name	L	T	P	С				
	1 st Semester								
EC501	Signal Processing Algorithms and Architectures	3	1	0	4				
CS521	Artificial Intelligence	3	0	2	4				
EC502	Medical Imaging and Bio-signal Analysis	3	0	0	3				
MA503	Probability and Stochastic Processes	3	0	0	3				
	Elective I	3	0	0	3				
EC531	Digital Signal Processors Lab	0	0	3	2				
EC532	Medical Imaging and Bio-signal Analysis Lab	0	0	3	2				
EC581	Capstone Project – I	0	0	0	1				
	Total C								
	2 nd Semester								
CS504	Machine Learning	3	0	0	3				
EC503	Computational Intelligence	3	0	0	3				
EC504	Statistical Signal Processing	3	0	0	3				
	Elective-II	3	0	0	3				
	Elective-III	3	0	0	3				
EC533	Signal Applications Lab	0	0	3	2				
CS533	Machine Learning Lab	0	0	3	2				
EC582	Capstone Project – II	0	0	0	1				
	Т	otal Cr	edit	ts	20				
3 rd Semester									
EC591	Major Project-I	0	0	0	10				
	4 th Semester								
EC592	Major Project-II	0	0	0	14				
	Total Credits 6								

Elective Courses (I, II & III)

Code	Course Name	L-T-P-C
EC551	VLSI for DSP	3-0-0-3
EC552	Image Processing and Computer Vision	3-0-0-3
EC553	Introduction to IoT	3-0-0-3
EC554	Signal Detection and Estimation Theory	3-0-0-3
EC555	Speech and Audio Processing	3-0-0-3
EC556	MIMO Wireless Communications	3-0-0-3
EC557	Microwave Imaging and Radar Signal Processing	3-0-0-3
EC558	Introduction to Pattern Recognition	3-0-0-3
MA521	Statistical Foundation for Data Science	3-0-0-3
CS557	Introduction to Blockchain Technology	3-0-0-3
CS558	Deep Learning and Applications	3-0-0-3

Course Syllabus

Course Code	Course nameLTPC							
EC501	Signal Processing Algorithms and Architectures	1 st						
Торіс	Contents	No. of Lectures						
Module-IOverview of Digital Signal Processing: Advantages of DSP over analog systems, salient features and characteristics of DSP systems, applications of DSP systems.								
Module-II	Addressing modes:Assembly instructions.Pipelining.Interrupts.Clockgenerator.Timer.Serial ports.Parallel ports.Host-port interface (HPI).11Comparison with TMS320C67X processor architecture and instruction set.11							
Module-III	Architecture of TMS320C67X processor. CPU data paths and control.9Addressing modes. Instruction set. Pipeline operation.9							
Module-IV	Interfacing with serial I/O. A/D, D/A converters. Interfacing with RAM, EEPROMs, FPGAs. Wait statools: Assembler. Debugger. C compiler. Linker and lo	9						
Module-V	VLIW Architecture. Multiprocessor DSPs, SHARC, SIMD, MIMD Architectures and Analog Devices DSPs. Applications: Digital Filter, Adaptive filter, Spectrum analyzer, Echo cancellation, Modem, Voice							
	То	otal N	lo. of	Lect	ures	48		
Text	 B. Venkataramani & M Bhaskar, Digital Signal Processor, Architecture, Programming and Applications, McGraw-Hill, 2nd edition, 2010. Srinivasan & A. Singh, Digital Signal Processing, Implementations using DSP Microprocessors, Cengage Learning: 1st edition, 2004 							
Reference	1. S. M. Kuo & Woon-Seng Gan, <i>Digital S.</i> <i>Implementations, and Applications</i> ", Prentice Hall,	Signal 1 st ec	<i>Pr</i> ilition	ocesso , 2004	ors: 1.	Architectures,		

Course Code	Course name	L	Т	Р	C	Year	Semester	
CS521	Artificial Intelligence	3	0	2	4	1st	1 st	
Торіс	Contents							
Module-I	Fundamental issues in intelligent systems: History of artificial intelligence; philosophical questions; fundamental definitions; modeling the world; the role of heuristics.							
Module-II Search and constraint satisfaction: Problem spaces; brute-force search; best- first search; two-player games; constraint satisfaction.							10	
Module-III	Knowledge representation and reaso predicate logic, first order logic), resolu- (frames, scripts), answer extraction	ning: ution 1; kr	Forr and u nowle	nal n nifica dge	netho ation; basec	ds (propositional, Informal methods 1 systems; logic	8	

	programming, User interface: Human Computer Interaction, User Interface Components, modules of user interface.						
Module-IV	AI planning systems: Definition and examples of planning systems; planning as search; operator-based planning; propositional planning; planning algorithms.	8					
Module-V	Reasoning under Uncertainty and Learning: probabilistic reasoning; Bayes theorem; Introduction to neural networks and reinforcement learning; Case based reasoning, analytical reasoning, model based reasoning,						
	Total	40					
Text	 Stuart Russell and Peter Norvig, "Artifical Intelligence: A Modern Appro Pearson; 4th Edition, 2020. Elaine Rich, Kevin Knight and Shivashankar B Nair, "Artificial Intelligence" 						
	 McGraw Hill, 3rd Edition 2017. R.B. Mishra, "<i>Artificial Intelligence</i>", PHI Learning Pvt. Ltd., 1st edition, 2010. 						
Reference	 N. J. Nilsson, "Principles of Artificial Intelligence", Narosa Publishing House, 2002. Clocksin & Mellish, "Programming in PROLOG", Narosa Publ. House, 2002 						

Course Code	Course Name	L	Т	Р	С	Semester		
EC502	Medical Imaging and Bio-signal Analysis	3	0	0	3	1 st		
Торіс	Contents	No. of Lectures						
Module-I	Introduction: Genesis and significance of bioelectric pote EMG and their monitoring and measurement, Spectral a analog filtering, correlation and estimation techniques, AF Adaptive Filters.	8						
Module-II	ECG: Pre-processing, Measurements of amplitude at Classification, QRS detection, ST segment analysis, Baseli wave form recognition, morphological studies and rhythm diagnosis based on decision theory ECT compression, estimation.	8						
Module-III	 EEG: Evoked responses, Epilepsy detection, Spike detection, Hjorth parameters, averaging techniques, removal of Artifacts by averaging and adaptive algorithms, pattern recognition of alpha, beta, theta and delta waves in EEG waves, sleep stages. EMG: Wave pattern studies, biofeedback, Zero crossings, Integrated EMG. Time frequency methods and Wavelets in Biomedical Signal Processing 							

Module-IV	Medical Imaging Systems : X-ray system, C.T. Scan, Ultrasound (A, B and M scans). MRI and Positron Emission Tomography. Fundamentals of digital image processing. Storage and display operation properties of digital image.	8			
Module-V	Image pre-processing by statistical and probabilistic methods. Image enhancement and restoration. Segmentation of images by applying Thresh hold, Edge based and Region based techniques. Image feature extraction, analysis of medical images.	8			
	Total No. of Lectures	40			
Text 1. W. J. Tompkins, Biomedical Digital Signal Processing, PHI, 1st edition, 1996. 2. W. D. 16 II					
	2. W. Birkienner, Appuea Medical Image Processing, CRC Press, 2 th edition, 2010.				
Reference	 A. Kohen, <i>Biomedical Signal Processing</i>, Volumes I & II, CRC Press, 1st edition, 2019. G. Dougherty, <i>Biomedical Image Processing</i>, Springer, 1st edition, 2011. 				

Course Code	Course name	L	Т	Р	С	Semester			
MA503	Probability and Stochastic Processes	3	0	0	3	1 st			
Торіс		No. of Lectures							
Module-I	dence	8							
Module-II	s of a rating	8							
Module-III	tions, ns of natrix, e and ution,	8							
Module-IV	Random process: probabilistic structure of a random process; mean, autocorrelation and autocovariance functions; stationarity - strict- sense stationary and wide-sense stationary (WSS) processes: time averages and ergodicity; spectral representation of a real WSS process-power spectral density, cross-power spectral density,								
Module-V	Indule-VLinear time-invariant systems with WSS process as an input- time and frequency domain analyses; examples of random processes: white noise, Gaussian, Poisson and Markov processes.								
	tures	40							

Text	 H. Stark and J. W. Woods, <i>Probability and Random Processes with Applications to Signal Processing</i>, Pearson, 3rd Edition, 2002. A. Papoulis and S. U. Pillai, <i>Probability, Random Variables and Stochastic Processes</i>, McGraw-Hill, 4th Edition, 2017.
Reference	 B. Hajek, An Exploration of Random Processes for Engineers, Cambridge University Press, 2015. Sheldon M Ross, Stochastic Processes, Wiley, 2nd Ed, 2016.

Course Code	Course Name	L	Т	Р	C	Year	Semester		
CS504	Machine Learning	3	0	0	3	1 st	2nd		
Tonic	Topic Content								
Topic									
Module I	Introduction: History of machine learning	ng, E	asic	conc	cepts		5		
Supervised learning:Supervised learning setup, LMS, Logistic regression, Perceptron, Backpropagation, neural networks, Exponential family, Generative learning algorithms, Gaussian discriminant analysis, Naive Bayes, Support vector machines, Model selection and feature selection, Ensemble methods: Bagging, 							10		
Module III	Learning theory: Bias/variance trade-off, Union and Chernoff/Hoeffding bounds, VC dimension, Worst case (online) learning.								
Module IV	Image: Addition of the second secon						9		
Module V	Miscellaneous topics: Hypothesis testin Analysis, adaptive hierarchical clusterir	g, cr Ig, g	oss-v adie	alida nt bo	ation postir	, quadratic discriminant ng.	8		
						Total No. of Lectures	40		
	1. Ethem Alpaydin, "Introduction	to M	lachi	ne L	earn	ing ", PHI, Third Edition,	2015.		
Text	2. Marsland, Stephen. " <i>Machine learning: an algorithmic perspective</i> ", Chapman and Hall/CRC, 2nd edition, 2014.								
	3. Tom Mitchell, "Machine Learning", McGraw Hill, First edition 2017.								
Poforonco	1. Murphy, Kevin, "Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series)", The MIT Press; Illustrated edition, 2012.								
Kelelelle	2. Müller, Andreas C., and Sarah Guido, " <i>Introduction to machine learning with guide for data scientists</i> ", O'Reilly, 1st edition, 2016.								

Course Code	Course name	L	Т	Semester					
EC503	Computational Intelligence3003								
Торіс	Contents								
	Introduction to Computational Intelligen	Lectures							
Module-I	Computational intelligence paradigms, Soft c conventional Artificial intelligence, Neuro-F characteristics	7							
Module-II	Rule-Based Expert Systems and Fuzzy Expert Systems: Rule-based expert systems, Uncertainty management, Fuzzy sets and operations of fuzzy sets, Fuzzy rules and fuzzy inference, Fuzzy expert systems, Case study: fuzzy logic controller for various applications								
Module-III	Artificial Neural Networks: Fundamental neuro-computing concepts: artificial neurons, activation functions, Neural network architectures, learning rules, Supervised learning neural networks: multi-layer feed forward neural networks, simple recurrent neural networks, time delay neural networks, supervised learning algorithms, Back propagation algorithm, Radial basis function networks Unsupervised learning neural neural networks, self-organizing feature maps, Deep neural networks and learning 								
Module-IV	Evolutionary techniques : Genetic Algorithm, Chromosomes, fitness functions, and selec algorithms: crossover and mutation, Genetic strategies, PSO, ACO, BFO	9							
Module-V	Hybrid Intelligent Systems: Neural expert sy Evolutionary neural network, case study of Neu	7							
			Fotal	No.	of Lectures	40			
Text	 S. Rajasekaran, G. A. Vijayalaksmi Pai, <i>Neutral Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications</i>, PHI Learning, 2nd edition, 2017. J. S. R. Jng, C. T. Sun, E. Mizutani, <i>Neuro-Fuzzy and Soft Computing</i>, Pearson Education, 1st edition, 2015. S. N. Deepa, S. N. Sivanandam, <i>Principles of Soft Computing</i>, John Wiley, 3rd edition, 2018 								
Reference	 Timothy J. Ross, <i>Fuzzy logic with Eng</i>edition,2011. Simon Haykin, <i>Neural Networks: A Comp</i> 2009. 	 2018. Timothy J. Ross, <i>Fuzzy logic with Engineering Applications</i>, McGraw-Hill, 3rd edition,2011. Simon Haykin, <i>Neural Networks: A Comprehensive Foundation</i>, Pearson, 3rd edition, 2009 							

Course Code	Course name	L	Т	Р	С	Semester
EC504	Statistical Signal Processing	3	0	0	2 nd	
Торіс	Contents	No. of Lectures				
Module-I	Review of probability theory and random var (function) of random variables, Sequences of rand- processes, Ergodicity, Mean square continuity, Mean mean square integral of stochastic processes, Stochasti linear dynamic systems to stochastic inputs, Correlational function, Power spectral density function	iable om v n squ ic sys Lya n	s: Tr variab are d stems punov	ransfor bles, R lerivati , Resp v equ	rmation Random ive and onse of lations,	8

	Dependent optimation . Non Powerian Estimation. Naccessary and sufficient						
Module-II	conditions, Biased and unbiased estimator, Minimum variance unbiased estimator (MVUE), Cramer-Rao Inequalities, Best Linear Unbiased Estimator (BLUE)	8					
	Maximum likelihood: Efficient estimator: Bayesian Estimation: Minimum						
	mean square-error (MMSE). Linear MMSE. Minimum probability of error	_					
Module-III	(MAP) estimator: Binary hypothesis testing. Bayes risk and Bayes decision	8					
	rule						
	Neyman Pearson based detector: Receiver operating characteristics and its						
	properties, Energy detector, Matched filter; Composite hypothesis testing:						
	Universally Most Powerful (UMP) Test, Karlin Rubin Theorem, Generalized	8					
Module-IV	Likelihood Ratio Test (GLRT); Applications: System identification,						
	Communication system						
	Optimal Linear Filter : Wiener Filter, Linear prediction of signals, Adaptive						
	Filters, Application of adaptive filters, Least mean square (LMS) algorithm,	0					
Module-V	Recursive least square algorithms, Levinson-Durbin Algorithm, Spectrum	0					
	estimation, Kalman filter.						
	Total No. of Lectures	40					
	1. M. H. Hayes, Statistical Digital Signal Processing and Modeling, John Wil	ley & Sons, Inc.,					
Toyt	2^{nd} edition, 2009.						
Телі	2. J. G. Proakis et. al., Algorithms for Statistical Signal Processing, Pearson Education, 1 st						
	edition, 2002.						
	1. A. Papoulis & S. Pillai, Probability, Random Variables and Stochastic Proc						
Dí	Hill, 4 th edition, 2017.						
	2. Steven M. Kay, Fundamentals of Statistical Signal Processing, Volume II: Detection Theory,						
Reference	Pearson Education, 1 st edition, 2009.						
	3. Steven M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory,						
	Pearson Education, 1 st edition, 2009.						

ELECTIVES (I, II, III) Syllabus

Course Code	Course name	L	Τ	Р	С	Semester		
EC551	VLSI for DSP	3	0	0	3			
Торіс	Contents					No. of Lectures		
Module-I	Graphical Representation of Signals, Signal Flow Graph, Data Flow Graph, Critical Path, Dependence Graph, Retiming Theorem.							
Module-II	Forward Path and Loop Retiming, Loop Bound and Iteration Bound, Cutset Retiming, Retiming IIR Filters, Adaptive Filter Basics (LMS Algorithm), Retiming LMS, Retiming Delayed LMS.							
Module-III	Parallel Processing in DSP by Unfolding, Basi Retiming for Unfolding, Loop Unfolding, Iterat Bitserial, Digit serial and Word serial Structures Unfolding Bit Serial Systems, Folding of DFG, F Filter, Retiming for Folding.	8						
Module-IV	Module-IVIntroduction to Delay Optimization by Folding, Life Time Analysis of Storage Variables, Forward Backward Data Allocation, Life Time Analysis of Storage Variables in a Digital Filter, Delay Folded Realization of a Digital Filter, Polyphase Decomposition of Sequences, Hardware Efficient 2-Parallel FIR Filters.							

Module-V	Hardware Efficient 3-Parallel FIR Filters, Introduction to First Level Architectures, 2's Complement Number Systems, Multiplication of Two Binary Numbers, Carry Ripple and Carry Save Array, Bit Serial Multipliers, Bit Serial Digital Filters, Baugh Wooley Multiplier, Distributed Arithmetic.	9			
	Total No. of Lectures	40			
Text1. Keshab K. Parhi, VLSI Digital Processing System: Design and Implementation, Wiley, 2 nd edition, 2011. 2. S. Monk, Programming FPGAs: Getting Started with Verilog, Prentice Hall, 1 st edition, 2016					
Reference	1. R. Woods, J. McAllister, G. Lightbody, Y. Yi, <i>FPGA-based Implementat</i> <i>Processing Systems</i> , Wiley, 2 nd edition 2017.	ion of Signal			

Course Code	Course name	L	Т	Р	С	Semester	
EC552	Image Processing and Computer Vision	3	0	0	3		
Торіс	Contents					No. of Lectures	
Module-I	Introduction: Light, Brightness adaption and discric coordinate conventions, Spatial Domain Filtering quantization; Spatial Domain Filtering: Intensity transformations, c histogram equalization, Correlation and convolution, S sharpening filters, gradient and Laplacian.	07					
Module-II	Filtering in the Frequency domain: Hotelling Tr Transforms and properties, FFT (Decimation in Decimation in Time Techniques), Convolution, sampling, Discrete Cosine Transform, Frequency domain	07					
Module-III	 Image Restoration: Basic Framework, Interactive R deformation and geometric transformations, image morp techniques, Noise characterization, Noise restoration filters, Linear, Position invariant degradations, Estimation functions, Restoration from projections Image Compression: Encoder-Decoder model, Types Lossy and Lossless compression. Morphological Image Processing: Basics, SE, E Opening, Closing, Hit-or-Miss Transform, Boundary Decoder Market Statement (1997) 	10					
Module-IV	V Image formation and representation: imaging geometry, radiometry, digitization, cameras and projections, rigid and affine transformations. Filtering: convolution, smoothing, differencing, and scale space. Feature matching and model fitting.						
Module-V	 Motion analysis: The motion field of rigid objects; motion parallax; optical flow, the image brightness constancy equation, affine flow; differential techniques; feature-based techniques; regularization and robust estimation; motion segmentation through EM. Motion tracking: statistical filtering; iterated estimation; observability and linear systems; the Kalman filter; the extended Kalman filter, Object recognition and shape representation: alignment, appearance-based methods, invariants, image eigenspaces, data-based techniques. 						
	Tota	ıl No	. of I	Lectu	res	40	

Text	 R. C. Gonzalez and R. E. Woods, <i>Digital Image Processing</i>, Pearson Education, 3rd edition, 2012. R.J. Schalkoff, <i>Digital Image Processing and Computer Vision</i>, Wiley and Sons, 2nd edition, 2017.
Reference	 R. Hartley and A. Zisserman, <i>Multiple View Geometry in Computer Vision</i>, Cambridge University Press, 2nd edition, 2004. David A. Forsyth, J. Ponce, <i>Computer Vision: A Modern Approach</i>, Pearson, 2nd edition, 2011.

Course Code	Course name	L	Т	Р	С	Semester		
EC553	Introduction to IoT	3	0	0	3			
Торіс	Contents		No. of Lectures					
Module-I	An Introduction to Internet-of-Things, architectur design principles and needed capabilities, An IoT a standards considerations, M2M and IoT Technology	8						
Module-II	State of art, reference model and architecture, IoT ref functional view, Deployment and Operational vi architectural views.	re, ınt	8					
Module-III	Sensing, transducers classification, Actuation, Smar Networking; Communication Protocols, Sensor Net Machine Communications, Wireless medium acc protocol survey, Survey routing protocols, Sensor d discovery, Data aggregation & dissemination.	8						
Module-IV	Sensor Technology, RFID Technology, WPAN Tec M2M, Cellular and mobile network technologies for REST, Zigbee, Bluetooth, transport and session laye MPTCP, UDP, DCCP, HTTP, CoAP, XMPP, AMQI	8						
Module-V	Developing IoTs, Introduction to Python, Introducti tools, developing applications through IoT tools, based application through embedded system platform Sensors and Actuators with Arduino, Implementing python; Domain specific applications of IoT: Home a applications, Surveillance applications, other IoT app	8						
	Te	otal No	o. of	Lectur	res	40		
Text	 J. Holler, V. Tsiatsis, C. Mulligan, S. Avesand, S. Karnouskos, D. Boyle, From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence, Academic Press, 1st edition, 2014. A. Bahga, V. Madisetti, Internet of Things: A Hands-on Approach, Universitie Press, 1st edition, 2015. P. Raj, Anupama C. Raman, The Internet of Things: Enabling Technologies, Platforms, and Use Cases, CRC Press, 1st edition, 2017. 							
Reference	 O. Hersent, D. Boswarthick, O. Elloumi, <i>The Internet of Things: Key Applications and Protocols</i>, Wiley Press, 2nd edition, 2012. D. Uckelmann, M. Harrison, F. Michahelles, <i>Architecting the Internet of Things</i>, Springer, 1st edition, 2011. 							

Course Code	Course name	L	Τ	P	C	Semester	
EC554	Signal Detection and Estimation Theory	3	0	0	3		
Торіс	Contents					No. of Lectures	
Module-I	Introduction of detection and estimation theory : Review of random processes, Problem formulation, Applications, Detection of deterministic signals, Matched filter and its performance, Detection of random signals, Energy detector and its performance, Detection of signals with unknown parameters and Sinusoid detection example, Chernoff and related performance hounds.						
Module-II	Hypothesis testing : Neyman-Pearson, minimax, and Bacriteria; Randomized decision; Compound hypothesis and universally most powerful tests, generalized likel Chernoff bound, asymptotic relative efficiency; Sequ Nonparametric detection, sign test, rank test.	n y ;; 8 ;;					
Module-III	Parameter Estimation : Bayesian formulation, Minimu error and MAP estimation, Linear MMSE estimation principle, Applications to channel estimation prob Variance Unbiased Estimation: MVUE criterion, f sufficient statistics, Neyman-fisher factorization, theorem, Cramer-Rao lower bound, Fisher information	d y 1 1					
Module-IV	Minimum Variance Unbiased Estimation : MVUE of MVUE, sufficient statistics, Neyman-fisher factorization theorem, Cramer-Rao lower bound, Fisher information	riter 1, Rae matri	ion, o-B ix.	fi lac	ndin kwe	g 1 6	
Module-V	Non-Random Parameter Estimation : Least squares linear unbiased estimation, Geometric interpretati likelihood Estimation, Efficiency and consistency of asymptotic properties.	it n 8 d					
	Total N	[0. of	f Le	ecti	ires	40	
Text	 H. L. Van Tre, <i>Detection, Estimation, and Modulation Theory, Part I</i>, John Wiley, 1st edition, 2012. H. V. Poor, <i>An Introduction to Signal Detection and Estimation</i>, Springer, 2nd edition, 2010. 						
Reference	 2010. M. H. Hayes, <i>Statistical Digital Signal Processing and Modeling</i>, John Wiley & Sons, Inc., 2nd edition, 2009. S. M. Kay, <i>Fundamentals of Statistical Signal Processing: Detection Theory</i>, Pearson Education, 1st edition, 2009. S. M. Kay, <i>Fundamentals of Statistical Signal Processing: Estimation Theory</i>, Pearson Education, 1st edition, 2009. 						

Course Code	Course name	L	Т	Р	C	Semester	
EC555	Speech and Audio Processing	3	0	0	3		
Торіс	Contents					No. of Lectures	
Module-I	Module-I Speech production and perception mechanisms, Speech signal processing methods, Frequency analysis methods, Auto and cross correlation functions.						
Module-II	Time domain and frequency domain knowledge Knowledge sources at segmental, sub-segmenta (prosodic) levels, excitation source, vocal tr knowledge.	7					
Module-III	Vector quantization, Hidden Markov models, Ga Support vector machines and Neural networks.	7					
Module-IV	Prediction coding, line spectral frequencies (L recognition, Connected word recognition, Continu Issues in speech synthesis, Models for speech syn synthesis systems	9					
Module-V	Issues in speaker recognition, Speaker verification dependent vs text-independent speaker recogni- speaker recognition systems, Speaker detecti combined with LDA and PCA, Acoustic Classifi Signal Processing, e.g. beat detection	10					
		40					
Text	 L. R. Rabiner and B. H. Juang, <i>Fundamentals of Speech Recognition</i>, Pearson Education, 1st edition, 2009. L. Rabiner, & R. Schafer, <i>Introduction to Digital Speech Processing</i>, Now Publishers Inc., Vol. 1, 2007. 						
Reference	1. B. Gold and N. Morgan, <i>Speech and Audio Signal Processing</i> , Wiley Student edition, 2004.						

Course Code	Course name	L	Т	Р	С	Semester
EC556	MIMO Wireless Communications	3	0	0	3	
Topic Contents						
Module-I	Evolution of Wireless Communication Systems 1G - 5G, Elements of Wireless Communication System, Modelling Wireless Channel, Overview of MIMO Communication Systems, Wireless Fading Channel Model, Bit Error Rate (BER) Performance of AWGN Channels					
Module-II	Large Scale Propagation Models, Path Loss, Small S Model, Small Scale Propagation Frequency Flat I Distribution	7				
Module-IIISmall Scale Propagation Received Signal Correlation, Max Delay Spread, Coherence Time, Mobility and Doppler Effect in Wireless Channels, Impact of Doppler Effect on Wireless Channel, Frequency Selective Fading, Delay Doppler Characteristics						8

Module-IV	LTE (Long Term Evolution) and WiMAX, Introduction to Code Division Multiple Access (CDMA), Analysis of Multi-user CDMA, Multiple Input Multiple Output (MIMO) Systems, Expression of MIMO Channel, Examples of MIMO Systems, MIMO Channel Characteristics	9			
Module-V	Spatial Diversity, Selection Combining, MIMO Transmit Diversity, Capacity of Deterministic MIMO Channels, MIMO Receivers, SVD based MIMO Transmission, Orthogonal Frequency Division Multiplexing (OFDM), BER Performance of OFDM Systems	9			
	Total No. of Lectures	40			
Text	Text1. E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj, H. V. Poor, MIMO wireless communications, Cambridge University Press, Illustrated edition 2009.2. A. Paulraj, C. Nabar, D. Gore, Introduction to Space-Time Wireless Communications, Cambridge University Press, 1st edition, 2008.				
Reference	 G. L. Stuber, <i>Principles of Mobile Communications</i>, Springer, 2nd edition., Rappaport, <i>Wireless Communications</i>, <i>Principles and Practice</i>, Pearson 2018. A. Goldsmith, <i>Wireless Communications</i>, Cambridge University Pres edition 2005. 	2017. , 2 nd edition, s, Illustrated			

Course Code	Course name	L	Т	Р	С	Semester	
EC557	Microwave Imaging and Radar Signal Processing	3	0	0	3		
Торіс	Contents					No. of Lectures	
Module-I	Electromagnetic Scattering, Wave Equations and Their S Scattering by Dielectric Targets, Volume Equivalence F Equations, Surface Scattering by Perfectly Electric Con Electromagnetic Inverse Scattering Problem: Two-Dim Scattering	7					
Module-II	Imaging Configurations and Model Approximations: Objectives of the Reconstruction, Tomographic configurations, Configurations for Buried- Object Detection, Born-Type Approximations, Extended Born Approximation, Rytov Approximation						
Module-III	Qualitative Reconstruction Methods: Generalized Soluti Posed Problems, Regularization Methods, Singular Value Regularized Solution of a Linear System Using Decomposition, Qualitative Methods for Object Localizat Back projection, w-k, beamforming, Civil and Industr Medical Applications of Microwave Imaging, Shallow Sub	9					
Module-IV	Basic radar definitions; radar range equation, receiver noi detection and signal-to-noise ratio, RCS, CW, FMCV frequency CW radars, delay line canceler, error signal of c monopulse radars, clutter, jamming, doppler shift, R waveform matched filter, pulse burst waveform, frequency compression waveforms	9					

Module-V	Phase array working and feed systems; Synthetic aperture radars (SAR), pulse compression techniques, Doppler processing, Alternate forms of the Doppler spectrum, Moving target indication (MTI), Pulse Doppler processing, Dwell-to-dwell stagger, Clutter mapping and the moving target detector, Detection of radar signals in noise.	8			
	Total No. of Lectures	40			
Text	 M. Pastorino, <i>Microwave Imaging</i>, Wiley & Sons, 1st edition, 2010. Mark A. Richards, <i>Fundamentals of Radar Signal Processing</i>, McGraw-Hill, 2nd edition 2014. S. Hawking, Adaptive Radar Signal Processing, John Wiley & Sons, Inc. 1st edition, 2007. 				
Reference	 M. I. Skolnik, <i>Introduction to Radar Systems</i>, McGraw-Hill, 2nd edition, 2012. V. C. Chen and H. Ling, <i>Time-Frequency Transforms for Radar Imaging Analysis</i>, Artech House, 1st edition, 2002. Bernard D. Steinberg, H. M. Subbaram, <i>Microwave Imaging Technique Sons.</i>, 1st edition, 1991. 	18. g and Signal es, Wiley &			

Course Code	Course name	L	Т	Р	С	Semester		
EC558	Introduction to Pattern Recognition	3	0	0	3			
Торіс	Contents	No. of Lectures						
Module-I	Introduction: Introduction fundamentals and definition Classifiers, Supervised and Unsupervised learning, Bayes	7						
Module-II	Features : types and traits, scaling ordering, measureme invariance, feature properties, dimensionality reduction dimensionality reduction by feature selection, PCA, KPC	8						
Module-III	Parameter estimation : Maximum likelihood estimation squares estimation (LSE), Method of minimum van Estimation (MVUE); parameter free methods: KNN, classifiers: linear regression, LDA, SVM, CNN.	8						
Module-IV	Classifiers and learning: Fundamentals of classifiers, Nonlinear Classifiers. Unsupervised and semi supervised from unclassified data, Clustering: Basic Conce Hierarchical agglomerative clustering, K-means partition supervised learning with expectation maximization unlabelled data; Characteristics analysis of different class	9						
Module-V	Classification with nominal features : decision tro classifier independent concepts, Combinations of cla voting, stacking	8						
Total No. of Lectures 40								
Text	 Christopher Bishop, <i>Pattern Recognition and Machine Learning</i>, Springer, 2nd printing edition, 2011. Richard O. Duda, Peter E. Hart, David G. Stork, <i>Pattern Classification</i>, John Wiley, 2nd edition, 2002. 							
Reference	 Kevin P. Murphy, <i>Machine Learning: A Probabilistic Perspective</i>, The MIT Press; Illustrated edition, 2012. S. Theodoridis, K. Koutroumbas, "<i>Pattern Recognition</i>", Academic Press, 4th edition, 2008. 							

Course Code	Course name	L	Т	Р	С	Year	Semester
MA521	Statistical Foundations for Data Science	3	0	0	4	1 st	1 st
Торіс	Contents						
-	Theory of Drobability Daves theorem Dandom	vori	oblag	fund	otion	ofrandom	Lectures
Module-I	variables and distribution functions, probability distributions (Binomial, Poisson, Normal), Beta and Gamma Distribution expectations and moments, moment generating functions. Joint, marginal, and conditional distribution's function. Conditional expectations. Covariance, correlation and regression, standard multivariate distributions, Sequence of random variables						6
Module-II	Statistics: convergences in probability and in distribution, law of large numbers, linear Regression; Central limit theorem. Application of Central Limit Theorem.						
Module-III	Sampling distributions of the sample mean and the sample variance for a normal population; Characteristics of Estimators ,Point and interval estimation; Sampling distributions (Chi-square, t, F,Z). Application of t distribution						
Module-IV	Basics of hypothesis testing, The Wald test, Type I and Type II errors, t-test Kolmogorov-Smirnov test (KS test), p-values, Permutation test, Pearson correlation coefficient. Neyman Pearson Lemma Theorem. Chi-square test for independence						
Module-V	Bayesian inference: Bayesian reasoning, Conjugate priors Regression: Simple Linear Regression, Multiple Linear Regression						
Total No. of Lectures 4							
Text	 Walepole, Myers, Myers, Ye; Probability and Statistics for Engineers and Scientists, Pearso 9th Edition, 2013. S.C.Gupta and V.K.Kapoor, Fundamental of Mathematical Statistics, Sultan Chand & So 12th Edition, 2020. H.C. Saxena and P.U. Surendran, Statistical Inference, S Chand & Company Pvt Ltd., 1994. 						<i>ists</i> , Pearson, and & Sons, Ltd., 1994.
Reference	 R. V. Hogg, J. W. McKean and A. Craig, <i>Introduction to Mathematical Statistics</i>, Pearson, 8th Edition, 2019. Larry Wasserman, <i>All of Statistics: A Concise Course in Statistical Inference</i>, Springer, Springer Texts in Statistics, 2010. Peter Bruce, Andrew Bruce, Peter Gedeck, <i>Practical Statistics for Data Scientists</i>, 2nd Edition, O'Reilly, 2020. 						

Course Code	Course name	L	Т	Р	С	Year	Semester
CS557	Introduction to Blockchain Technology	3	0	0	3	1st	
Торіс	Contents						No. of Lectures
Module-I	Basics of Blockchain Technology: Cryptography, Hashing, MD5 message digest algorithm, secure hash algorithm (SHA-1), security of hash functions, digital signatures.					8	
Module-II	Introduction to Blockchain Technology: Blockchain introduction, applications, opportunities and challenges in blockchain technology.					6	
Module-III	Bitcoin and Cryptocurrency: Bitcoin introduction, bitcoin mining, bitcoin case studies, understanding cryptocurrency.					9	
Module-IV	Blockchain Technology Applications: Ethereum blockchain, ethereum virtual machine and gas, smart contracts.					9	
Module-V	Blockchain Case studies: ICO case study, banking case study, blockchain white papers, study of recent trends and features of blockchain technology.					8	
Total No. of Lectures							40
Text	 Roger Wattenhofer, "The Science of the Blockchain", Createspace Independent Pub, 1st edition 2016 Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfed "Bitcoin and cryptocurrency technologies: a comprehensive introduction", Princeton Universion Press; Illustrated edition, 2016 					ub, 1st edition, en Goldfeder, ton University	
Reference	 Behrouz A Forouzan, Debdeep Mukhopadhyay, "Cryptography and Network Security", N GrawHill, 3nd Edition, 2016. Melanie Swan, "Blockchain", O'Reilly, 1st Edition, 2015. 					Security", Mc-	

Course Code	Course name	L	Т	Р	С	Year	Semester
CS558	Deep Learning and its Applications	3	0	0	6	1st	
Торіс	Contents						No. of Lectures
Module-I	Introduction : Review of Feedforward neural network, brief review of concepts from optimization, Multilayer Perceptron, Difficulty of training deep neural networks, Discussion on deep learning frameworks.						06

Module-II	Convolutional Neural Networks : Construction of foundational layers of CNNs (pooling, convolutions) and to stack them properly in a deep network to solve multi-class image classification problems. Discussions on various convnet architectures: LeNet, AlexNet.					
Module-III	Recurrent Neural Networks : Back propagation through time, Long Short Term Memory, Gated Recurrent Units, Bidirectional LSTMs, Bidirectional RNNs					
Module-IV	Generative models:Generative Adversarial Networks (GAN), Deep10Convolutional GAN (generative adversarial network).10					
Module-V	Recent trends: Variational Autoencoders, Multi-task Deep Learning,Applications: Vision, NLP (just an overview of different applications in PyTorch)					
	Total No. of Lectures	40				
Text	 Ian Goodfellow and Yoshua Bengio and Aaron Courville, "Deep Learning," MIT Press, 2016. 					
	 Christopher Bishop, "Pattern Recognition and Machine Learning", Springer; 1st edition, 2006. 					
Reference	1. Ian Pointer, "Programming PyTorch for Deep Learning", Shroff/O'Reilly; First edition 2019.					
	2. Sherin Thomas & Sudhanshu Passi, "PyTorch Deep Learning Hands-On", Packt Publishing, 2019					