INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHAGALPUR Dept. of Electronics and Communication Engineering (ECE) M. Tech in VLSI & Embedded System (For Regular Students)

Curriculum

Code	Course Name		L	T	P	С			
1 st Semester									
EC510	Embedded System Design		3	0	2	4			
EC511	Modeling & Simulation of Nanoscale Device		3	0	0	3			
EC512	Digital VLSI Design		3	0	2	4			
EC513	VLSI DSP		3	0	0	3			
EC5XX	Elective-I		3	0	0	3			
EC535	Device Simulation LAB		0	0	3	2			
EC583	Seminar		0	0	0	1			
		Total	Cr	edit	ts	20			
2 nd Semester									
EC514	Analog VLSI Design		3	0	0	3			
EC515	Embedded Computing		3	0	2	4			
EC516	SoC Design using Verilog		3	0	2	4			
EC5XX	Elective-II		3	0	0	3			
EC5XX	Elective-III		3	0	0	3			
EC537	Analog IC Design LAB		0	0	3	2			
EC582	Capstone Project		0	0	0	1			
		Total	Cr	edi	ts	20			
3 rd Semester									
EC591	Major Project-I		0	0	0	10			
	4 th Semester								
EC592	Major Project-II		0	0	0	14			
		Total	Cr	edit	s	64			

Elective Courses

Code	Course Name	L-T-P-C
EC561	Semiconductor Microwave Devices and Applications	3-0-0-3
EC562	Semiconductor IC Technology	3-0-0-3
EC563	RF Integrated Circuit Design	3-0-0-3
EC564	Performance and Reliability of VLSI Circuits	3-0-0-3
EC565	Advanced VLSI Interconnects	3-0-0-3
EC566	VLSI Physical Design	3-0-0-3
EC567	CAD for VLSI	3-0-0-3
EC568	MEMS & NEMS	3-0-0-3
EC569	Real Time and Embedded Operating Systems	3-0-0-3
EC570	Quantum Electronics	3-0-0-3
EC553	Introduction to IoT	3-0-2-4
EC571	Hardware Security	3-0-0-3

Course Syllabus

Course	Commo	L	Т	Р	С	Comoston
Code	Course name		L	r		Semester
EC510	Embedded System Design	3	0	0	3	1 st
Торіс	Contents					No. of Lectures
Module-I	Embedded Systems design & modeling with unified markup language (UML). ARM processor fundamentals: Introduction to microprocessors and microcontrollers, 8-bit and 16- bit, von Neumann and Harvard architectures, CISC and RISC architectures, open-source core (LEOX), ARM versions, ARM instruction set: programming model, assembly language, Thumb instruction set, memory organization, data operations and flow control.					
Module-II	CPUs: Input/output mechanisms, isolated and memori interrupts and real time operations, ARM interrupts vo and latency; supervisor modes, exceptions, traps, co-pri- memory and memory management.	07				
Module-III	Embedded Platforms: CPUs: bus protocols, system bus configuration, USB and SPI buses, DMA, ARM bus; memory devices: memory device configuration, ROM, RAM, DRAM; I/O devices: timers,				10	
Module-IV	Processes and Embedded Operating Systems: mul multiple processes; process abstraction; context switch multitasking, pre-emptive multitasking, process and design; operating systems and RTOS; scheduling police communication.	08				
Module-V	Networks: distributed embedded architectures: networks abstractions, hardware and software architectures; networks for embedded systems: I2C bus, CAN bus.					09
	Total					40
Text	 E. A. Lee and S. A. Seshia, <i>Introduction to Embed</i> <i>Approach</i>, 2nd edition, MIT Press, 2017. Frank Vahid and Tony Givargis, <i>Embedded System</i> <i>Introduction</i>, John Wiley & Sons, 3rd edition, 2006 Ramesh Gaonkar, <i>Microprocessor Architecture</i>, 1 8085, Penram International Publishing, 6th edition, 	ed Hardware / Software				
Reference	 S. Chattopadhyan, <i>Embedded System Design</i>, PHI Shibu K V, <i>Introduction to Embedded Systems</i>, Ta 	, 2 nd	editi			

Course Code	Course name	L	Т	Р	С	Semester
EC511	Modeling & Simulation of Nanoscale Device	3	0	0	3	1^{st}
Торіс	Contents					
Module-I	Semiconductor Fundamentals: Poisson and continuity equations, Recombination (direct, Auger, trap-assisted), Equilibrium carrier concentrations (electron statistics, density of states, effective mass, bandgap narrowing), Review of PN and MS diodes					
Module-II	Quantum Mechanics Fundamentals: Basic Quantum Mechanics, Crystal symmetry and band structure, 2D/1Ddensity of states, Tunnelling;					

-					
Module-III	MOS Capacitors: Modes of operation, C-V characteristics, gated diode, non-ideal effects, High fields effects, Long Channel MOSFET Devices: Review of operation, I-V characteristics, Sub threshold conduction, Threshold voltage; Short Channel MOSFET Devices: Scaling effects, Channel velocity limitations, Hot carrier effects, Quantum mechanical effects on 2DEG	09			
Module-IV	CMOS Device Design: Scaling relationships, Threshold voltage control, On/Off currents, Channel doping profiles, Circuit and switching behavior	07			
Module-V	Advanced Device Technology: 2D Devices, SoI, SiGe, strained Si, Alternative oxide/gate materials, Alternative geometries (raised source/drain, dual gate, vertical), Memory Devices (DRAM, Flash).	07			
	Total No. of Lectures	40			
Text	 R. F. Pierret, Advanced Semiconductor Fundamentals, Pearson Education, 1stedition, 2006. S. M. Sze, Physics of Semiconductor Devices, Cambridge University Press, 1stedition, 2010. Ben G Streetman, S K Banerjee, Solid State Electronic Devices, PHI, 6th edition, 2006. 				
Reference	 S. M. Sze, M. K. Lee, Semiconductor Devices, Physics and Technology, V 8th edition, 2015. J. Singh, Semiconductor Devices: Basic Principles, Wiley & Sons, 1st edit 	Wiley & Sons,			

Course Code	Course Name	L	Τ	Р	C	Semester
EC512	Digital VLSI Design	3	0	0	3	1^{st}
Торіс	Contents					No. of Lectures
Module-I	Module-I A Historical Perspective of VLSI; Issues in Digital Integrated Circuit Design; Quality Metrics of a Digital Design: Cost, Functionality & Robustness, Performance, and Power & Energy Consumption; design hierarchy, layers of abstraction, VLSI design styles.					
Module-II	MOS Device Model with Sub-micron Effects, Mar Integrated Circuits, Design Rules, The Static CMOS Inv CMOS Inverter, Robustness of the CMOS Inverter, Sw Noise Margins.	08				
Module-III	The Dynamic behavior of Inverter, Parasitic Capacit Delay, Dynamic Power Consumption, Static Consum optimization of Inverters, Logical Effort. Interco Capacitance, Resistance, and Inductance, Electrical W Wire Models.	09				
Module-IV	Static Complimentary CMOS Design, Ratioed Logic, Pa Transmission Gate Logic, DCVSL, Dynamic Logic considerations in dynamic design, Power Dissipation in C NORA designs, Asymmetrical Gates and Skewed Gates.	10				
Module-V	Sequential Circuit Design using transmission gates, Late Race Condition, Master-slave FFs, Counter designs.	ches	and]	Flip-fl	ops,	08
	То	tal N	lo. of	' Lectı	ires	40
Text	1. Jan M. Rabaey, A. Chandrakasan, B. Nikolic, " <i>Digital Integrated Circuits Perspective</i> " Pearson Education India, 2 nd edition, 2016.					: A Design
Reference	 N. Weste and D. Harris, <i>CMOS VLSI Design: A Circum</i> Education India, 3rd edition, 2012. Wakerly, <i>Digital Design: Principles And Practices</i>, P 				-	

Course Code	Course name	L	Т	Р	C	Semester
EC513	VLSI DSP	3	0	0	3	2 nd
Торіс	Contents					No. of Lectures
Module-I	Graphical Representation of Signals, Signal Flow G Critical Path, Dependence Graph, Retiming Theore	-	, Data	a Flow	Graph,	7
Module-II	Module-II Forward Path and Loop Retiming, Loop Bound and Iteration Bound, Cutset Retiming, Retiming IIR Filters, Adaptive Filter Basics (LMS Algorithm), Retiming LMS, Retiming Delayed LMS.					
Module-III	Parallel Processing in DSP by Unfolding, Basic Unfolding Relation, Retiming for Unfolding, Loop Unfolding, Iteration bound for Loops, Bitserial, Digit serial and Word serial Structures, unfolding a Switch, Unfolding Bit Serial Systems, Folding of DFG, Folding Examples - IIR Filter, Retiming for Folding.					8
Module-IV	Introduction to Delay Optimization by Folding, Life Time Analysis of Storage Variables, Forward Backward Data Allocation, Life Time Analysis of Storage Variables in a Digital Filter, Delay Folded Realization of a Digital Filter, Polyphase Decomposition of Sequences, Hardware Efficient 2-Parallel FIR Filters.					9
Module-V	Hardware Efficient 3-Parallel FIR Filters, Intro- Architectures, 2's Complement Number Systems, Binary Numbers, Carry Ripple and Carry Sa Multipliers, Bit Serial Digital Filters, Baugh Distributed Arithmetic.	Mul ive	tiplic Array	ation , Bit	of Two Serial	9
Total No. of Lectures						40
Text	 Keshab K. Parhi, <i>VLSI Digital Processing System: Design and Implementation</i>, Wiley, 2nd edition, 1999. S. Monk, Programming FPGAs: Getting Started with Verilog, Prentice Hall, 1st edition, 2016. 					
Reference	1. R. Woods, J. McAllister, G. Lightbody, Y. Yi <i>Processing Systems</i> , Wiley, 2 nd edition 2017.	, FP	GA-b	ased I	mplemen	ntation of Signal

Course Code	Course Name	L	Τ	Р	С	Semester	
EC514	Analog VLSI Design	3	0	0	3	2^{nd}	
Торіс	Content						
Module-I	CMOS device fundamentals: Basic MOS models, device capacitances, parasitic resistances, substrate models, transconductance, output resistance, fT, frequency dependence of device parameters.						
Module-II	Single stage amplifiers: Common source amplifier, source degeneration, source follower, common gate amplifier, cascade stage. Differential						
Module-III	Current Mirrors, Current and Voltage Reference: Basic current mirrors, cascode current mirrors, active current mirrors, low current biasing, supply insensitive biasing temperature insensitive biasing impact of device						

Module-IV	Operational Amplifiers: Performance parameters, One-stage and two-stage Op Amps, gain boosting, comparison, common mode feedback, input range, slew rate, power supply rejection, noise in Op Amps, VDTA.	09		
Module-V	Stability and Frequency Compensation: Multi pole systems, phase margin, frequency compensation. High Performance CMOS Op-Amp: Buffered Op-amps, High speed/Frequency Op-amps, Differential output op-amps, low noise and low voltage op-amps	06		
	Total	40		
 B. Razavi, <i>Design of Analog CMOS Integrated Circuits</i>, Tata McGraw-Hill, 2nd edition, 2017. R. J. Baker, H W Li, D. E. Boyce, <i>CMOS Circuit design, Layout and Simulation</i>, John Wiley & Sons, 2nd edition, 2004. 				
Text	 R. J. Baker, H W Li, D. E. Boyce, CMOS Circuit design, Layout and Sin Wiley & Sons, 2nd edition, 2004. 	nulation, John		

Course Code	Course Name	L	Т	Р	С	Semester
EC515	Embedded Computing	3	0	0	3	2^{nd}
Торіс	Contents					No. of Lectures
Module-I	 Embedded Systems Design Process, Formalism for System design. Preliminaries, Programming Input and Output, Supervisor mode, Exceptions, Traps, Coprocessors, Memory Systems Mechanisms, CPU Performance, CPU Power Consumption, Component Interfacing, Designing with Microprocessor, Development and Debugging, System-Level Performance Analysis. 					
Module-II	Components for embedded programs, Models of programs, Assembly, Linking and Loading, Basic Compilation Techniques, Program optimization, Program-Level performance analysis, Software performance optimization, Program-Level energy and power analysis, Analysis and optimization of program size, Program validation and testing.					
Module-III	Introduction to processor design-architecture and organization, Abstraction in hardware design, Instruction set design, Processor design tradeoffs, RISC, Architecture inheritance, Programmer's model, Development tools.					07
Module-IV	Architectural support for high level languages Architectural system development - ARM memory interface, AMBA, peripheral specifications, JTAG, Embedded trace, sig support, ARM processor cores. Memory hierarchy Me speed, On-chip memory, Caches, Memory manager hierarchy Architectural support for OS-Embedded ARM a	09				
Module-V	The Integrated Development Environment, Types of File generated on Cross Compilation, Dis-assembler /Decompiler, Simulators, Emulators, and Debugging, Target Hardware Debugging.					06
	Total 1				res	40
Text	 Barry, Modern Embedded Computing, Elsevier, 1st ed. Joseph A. Fisher, P. Faraboschi, C. Young, Embedded to Architecture, Compilers and Tools, Morgan Kaufm 	d C d	отрі	<i>iting</i> .		11

Reference	1. Seppo J. Ovaska Phillip A. Laplante, <i>Real-Time Systems Design and Analysis: Tools</i>
Reference	for the Practitioner, Wiley & Sons, 4 th edition, 2011.

Course Code	Course name	L	Т	P	С	Semester
EC516	SoC Design using Verilog	3	0	2	4	1 st
Торіс	Contents					No. of Lectures
Module-I	VLSI Design Flow, Gajski-Y chart, Basic c description languages. Design flow for Veri synthesis. Hierarchy, Concurrency, Logic, an Structural, Data-flow and Behavioral styles of hard	log b nd D	ased elay	RTL mode	/logic elling,	6
Module-II	Syntax and Semantics of Verilog. Variable, signal and tables. Data types, Operators, expressions an Entities, architecture specification and config instantiation. Use of Procedures, Tasks and Modelling, Examples of design using Verilog.	8				
Module-III	Combinational Circuit Design, Sequential Circu controller and Data, path units, Finite State Machi					7
Module-IV	Functional Verification Concepts, Simulators, C Introduction to Verification Methodologies, testi- and random Testing, Test Cases Vs Test C Components, Functional Verification, Assertion Coverage Driven Verification.	9				
Module-V	Introduction to Programmable, Logic and FPG. FPGA, Families, Architecture of popular Xilinx IS Xilinx ISE, Implementation Details, Advanced FP Synthesis for FPGA, Static Timing Analysis, D Xilinx Platforms.	10				
		Total	No. o	f Lec	tures	40
Text	1. S. Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, PHI, 2 nd edition 2003.					HI, 2 nd edition,
Reference	 Michael D. Ciletti, Advanced Digital Design 2005. John M. Williams, Digital VLSI Design with V 			_		

ELECTIVES (I, II, III) Syllabus

Course Code	Course name	L	Τ	Р	С	Semester				
EC561	Semiconductor Microwave Devices and Applications	3	0							
Торіс	Contents									
Module-I Introduction to radio frequency engineering; advantages; various frequency bands; propagation; transmission lines; microwave waveguides and components; their characterizations; s-parameters and their use										
Module-IIMicrowave transistor; FETs, Gunn diode, IMPATT diodes; microwave tubes; Klystron; two cavity Klystron amplifier analysis; reflex Klystron; TWTs; high power tubes; cross field tubes; micro-strip lines; MMICs										

Module-III	Microwave measurements; microwave antennas and microwave communication system; microwave applications; ISM applications	08					
Module-IV	Introduction to EMI and EMC; microwave hazards., refraction and diffraction; transmission lines and resonators	08					
Module-V	Module-V Antennas and radiation; half-wave dipole antenna; loop antenna; helical antenna; directive arrays; frequency independent antennas; reflector and lens antennas; horn antennas; antenna arrays; Friis formula; antenna practices and antenna measurements						
	Total No. of Lectures	40					
Text	Text 1. Samuel Y. Liao, <i>Microwave Devices and Circuits</i> , Pearson education, 3 rd edition, 2017.						
Reference	e 1. D. M. Pozar, <i>Microwave Engineering</i> , John Wiley & Sons, 2 nd edition, 1998.						

Course Code	Course name	L	Τ	P	C	Semester			
EC562	Semiconductor IC Technology	3	0	0	3				
Торіс	Contents	No. of Lectures							
Module-I	Introduction to Semiconductor Manufacturing and of the Crystal growth, wafer fabrication and basic p wafers.	06							
Module-II	Lithography, Thermal Oxidation of Silicon: The Process, Etching Techniques, Photomask Fab. Systems, Exposure sources, The Oxidation F Oxidation, Masking Properties of Silicon Dioxid Oxidation, Si-SiO2 Interface	08							
Module-III	Diffusion, Ion Implantation, Film Deposition: The Diffusion Process, Mathematical Model for Diffusion, Constant, The Diffusion Coefficient, Successive Diffusions, Diffusion Systems, Implantation, Technology								
Module-IV	Interconnections and Contacts, Packaging an Interconnection sand Contact Technology, Diffuse Polysilicon Interconnections and Buried Conta Multilayer-Contact Technology, Copper Interconne Processes, Wafer Thinning and Die Separation, Die Bonding, Packages, Yield	08							
Module-V	MOS Process Integration, Bipolar Process Integr Device Considerations, MOS Transistor Layout Complementary MOS (CMOS) Technology, Th Structure, Current Gain, Transit Time, Base width, B Other Elements in SBC Technology, Advanced Bipol Bipolar Isolation Techniques. Deep Submicron Voltage/Low-Power CMOS/BiCMOS Processes. Directions of CMOS/BiCMOS Processes	09							
				Lectu		40			
Text	1. J. Plummer, Michael D. Deal and Peter B. Griffin, <i>Silicon VLSI</i> <i>Fundamentals, Practice and Modelling</i> , Pearson Education, 1 st edition, 20								
Text	1. S.K. Gandhi, VLSI Fabrication Principles, V	Viley,	$, 2^{\overline{nd}}e$	ditior	ı 1994	4.			

Course Code	Course name	L	Т	Р	С	Year	Semester		
EC563	RF Integrated Circuit Design	3	0	0	3				
Торіс	Co	No. of Lectures							
Module-I	Module-I Introduction & Passive RLC Networks: RF systems – basic architectures Transmission media and reflections Maximum power transfer, Parallel RLC tank, Series RLC networks, matching, Pi match, T match, Review of MOS Device Physics								
Module-II	Distributed Systems: Transmission equation, examples, Lossy transm gamma, Bandwidth estimation usi constants, Zeros to enhance band amplifiers, Cascaded amplifiers	09							
Module-III	LNA Design: Intrinsic MOS noise match, large signal performance, mixers, Mixer Design, Subsamplin	desig	n exa				08		
Module-IV	RF Power Amplifiers: Class A, AB, B, C, D, E, F amplifiers, Voltage								
Module-V	Frequency synthesis and oscillators: Frequency division, integer-N								
				,	<u> Fotal</u>	No. of Lectures	42		
Text	 T. H. Lee, <i>The Design of CMOS Radio-Frequency Integrated Circuits</i>, Cambridge University Press; 2nd edition, 2004. C. Coleman, <i>An Introduction to Radio Frequency Engineering</i>, Cambridge University Press, Reissue edition, 2004. 								
Reference	1. Kiat S. Yeo, <i>Design Of CMOS</i> 1 st edition, 2010.	RF Ir	ntegra	ted C	Circui	ts And Systems, W	orld Scientific,		

Course Code	Course nameLTPC	Semester			
EC564	Performance and Reliability of VLSI Circuits3003				
Торіс	Contents	No. of Lectures			
Module-I	Nanoscale MOSFET Characteristics: Quasi-ballistic I-V characteristics, terminal capacitances of transistors considering quantum effects, parasitic resistances in nanoscale MOSFETs.	05			
Module-II	be-II Delay and Timing Models: Classical delay models of logic gates, logic gate delay models for nano-regime CMOS technologies, timing parameters of sequential circuit elements, access-time of CMOS memories, impact of process/temperature/supply-voltage variations on timing parameters.				
Module-III	Power Consumption: Models for dynamic power, short circuit power and				
Module-IV	Reliability of CMOS Circuits: Circuit performance considering NBTI/PBTI				
Module-V	dule-V Analog Circuit Performance Parameters: Impact of parasitic effects, process/temperature variation, device reliability effects.				
	Total No. of Lectures	42			

Text	1. M Stanisavljević, A Schmid, Y Leblebici, " <i>Reliability of Nanoscale Circuits and Systems: Methodologies and Circuit Architectures</i> " Springer, 11 th edition, 2014.
Reference	1. Behzad Razavi, " <i>Design of Analog CMOS Integrated Circuits</i> ", Tata McGraw-Hill, 2 nd edition, 2017.

Course Code	Course name	L T	P	С	Semester				
EC565	Advanced VLSI Interconnects	3 0	0	3					
Торіс	Contents				No. of Lectures				
Module-I	Interconnects for VLSI applications, metallic interconnects, optical interconnects, superconducting interconnects, advantages of copper interconnect, challenges posed by copper interconnects, fabrication process, even and odd mode capacitances, miller theorem, transmission line 								
Module-II	Parasitic resistance, effect of surface/interface scattering and diffusion barrier on resistance, Capacitance: parallel-plate capacitance, fringing capacitance, coupling capacitance, methods of capacitance extraction, Inductance: self- inductance, mutual inductance, methods of inductance extraction, high frequency losses, frequency dependent parasitics, skin effect, dispersion effect.								
Module-III	Elmore model, Transfer function model, even and odd mode model, Time domain analysis of multiconductor lines, Finite Difference Time Domain (FDTD) method, performance analysis using linear driver (Resistive) and nonlinear driver (CMOS), advanced interconnect techniques to avoid crosstalk.								
Module-IV	interconnects, Silicon nanowires, Carbon nanotubes, Graphe	Optical interconnects, Superconducting interconnects, Nanotechnology interconnects, Silicon nanowires, Carbon nanotubes, Graphene nanoribbons: system issues and challenges, material processing issues and challenges,							
Module-V	Quantum electrical properties: quantum conductance, quantum capacitance, kinetic inductance, Carbon nanotube (CNT) and Graphene nanoribbon (GNR) interconnects, electron scattering and lattice vibrations, electron mean free path, single-wall CNT and single layer GNR resistance model, multi- wall CNT and multi-layer GNR resistance model, transmission line interconnect models, performance comparison of CNTs, GNRs and copper interconnects.								
		No. of L			42				
Text	 Michel S. Nakhla, Q.J. Zhang, "Modeling and Simulation of High-Spee Interconnects", Springer, 2nd edition, 2012. Y. S. Diamand, T. Osaka, M. Datta, T. Ohba, "Advanced Nanoscale ULSI Interco Fundamentals and Applications", Springer, 9th edition, 2009. 								
Reference	1. M. Baklanov, Paul S. Ho, E. Zschech, "Advanced Na Fundamentals and Applications", Wiley, 1 st edition, 201		e ULS	SI Int	erconnects:				

Course Code	Course name	L	Τ	P	C	Semester					
EC566	VLSI Physical Design										
Торіс	Contents					No. of Lectures					
Module-I	Module-I Layout and design rules, materials for VLSI fabrication, basic algorithmic concepts for physical design, physical design processes and complexities. Partition: Kernigham-Lin's algorithm, Fiduccia Mattheyes algorithm, Krishnamurty extension, hMETIS algorithm, multilevel partition techniques.										
Module-II	Floor-Planning: Hierarchical design, wirelength estimation, nonslicing floorplan, polar graph representation, operato Stockmeyer algorithm for floor planning, mixed integer linear pro-	r	con			07					
Module-III	Placement: Design types: ASICs, SoC, microprocessor RLM; techniques: Simulated annealing, partition-based, analytical, quadratic; Timing and congestion considerations.					08					
Module-IV	Routing: Detailed, global and specialized routing, channel ordering, channel routing problems and constraint graphs, routing algorithms, Yoshimura and Kuh's method, zone scanning and net merging, boundary terminal problem, minimum density spanning forest problem, topological routing, cluster graph representation.										
Module-V	Sequential Logic Optimization and Cell Binding: State based optimization, state minimization, algorithms; Library binding and its algorithms, concurrent binding										
	Total No.	of I	Lect	tuı	es	40					
Text	 M. Sarrafzadeh, and C.K. Wong, "An Introduction to VLSI Physical Design", McGraw- Hill. 4th edition, 2009. W. Wolf, "Modern VLSI Design System on Silicon", Prentice Hall, 2nd Education., 2008. 										
Reference	 Naveed A. Sherwani, "Algorithm for VLSI Physical Design Automation", Springer, 3rd edition, 2013. Alan Hastings, "Art of Analog Layout", Pearson, 2nd edition, 2005. 										

Course Code	Course name	L	Т	Р	С	Semester					
EC567	CAD for VLSI	3	0	0	3						
Торіс	Topic Contents										
Module-I	Matrices: Linear dependence of vectors, solution of linear equations, bases of vector spaces. orthogonality, complementary orthogonal spaces and solution spaces of linear equations.										
Module-II	Graphs: representation of graphs using matrices; paths, connectedness;										
Module-III	Algorithms and data structures: efficient representation of graphs; elementary graph algorithms involving BES and DES trees, such as finding connected and										
Module-IV Algorithms for VLSI Physical Design, Synthesis, Circuit Simulation and Digital Design Automation.											
Module-V	Algorithms for Design Automation using FPGA/CPLD Fault Tolerant										
	Total No. of	Le	ctu	res	Ī	40					

	1. B. Muthuswamy, S. Banerjee, Introduction to Nonlinear Circuits and Networks, Matrix
	Springer, 1 st edition, 2019.
Text	2. W. J. McCalla, <i>Fundamentals of Computer-Aided Circuit Simulation</i> , Springer, 1 st edition,
ТСЛ	1987.
	3. L. Pillage, Ronald A. Rohrer, C. Visweswariah, <i>Electronic Circuit and System Simulation</i>
	<i>Methods</i> , McGraw-Hill Inc, 1 st edition, 1995.
	1. Naveed A. Sherwani, <i>Algorithms for VLSI Design Automation</i> , Springer, 3 rd edition, 2013.
	2. H. Narayanan, Submodular Functions and Electrical Networks, Elsevier, 2 nd edition,
Deference	1997.
Reference	3. David S. Watkins, <i>Fundamentals of Matrix Computations</i> , Wiley, 3 rd edition, 2010.
	4. Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science,
	PHI, 1 st edition, 1979.

Course Code	Course name	L	Т	Р	С	Year	Semester				
EC568	MEMS and NEMS	3	0	0	3						
Торіс	ppic Contents										
Module-I	Module-I Overview and Introduction: New trends in Engineering and Science: Micro and Nano scale systems Introduction to Design of MEMS and NEMS, Overview of Nano and Micro electromechanical Systems, Applications of Micro and Nano electromechanical systems, Micro electromechanical systems, devices and structures Definitions, Materials for MEMS: Silicon, silicon compounds, polymers, metals										
Module-II	MEMS Fabrication Technologies: Microsystems fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation. Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential packaging technologies, Selection of packaging materials										
Module-III	Micro Sensors: MEMS Sensors: Design of Acous sensor, Vibratory gyroscope, Capacitive and Piezo engineering mechanics behind these Micro sensors. pressure sensor	Re	sist	ive F	Pressu	ire sensors-	08				
Module-IV	Micro Actuators: Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys Actuation using piezoelectric crystals Actuation										
Module-V	Nano-systems And Quantum Mechanics: Atomic Structures and Quantum Mechanics, Molecular and Nanostructure Dynamics: Schrödinger Equation and Wave function Theory, Density Functional Theory, Nanostructures and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits										
						Lectures	40				
Text	 Tai Ran Hsu, <i>MEMS and Microsystems Design</i> edition, 2017. Chang Liu, <i>Foundations of MEMS</i>, Pearson Edu 						Graw Hill, 1 st				
Reference	1. S. E. Lyshevski, <i>MEMS and NEMS: System</i> . 1 st edition, 2002.						CRC Press,				

Course Code	Course name	L	Τ	P	С	Semester			
EC569	Real time and Embedded Operating Systems	3	0	0	3	2 nd			
Topic Contents									
Module-I	ve systems.	06							
Module-II	ication and	08							
Module-III	Module-III Real time operating systems; validation and verification; real time process and applications; distributed real time systems.								
Module-IV Secure coding practices, memory management, timeline design and analysis using metrics and schedulability tests, hardware interfacing, device driver programming.									
Module-VMemory maps and boot kernels, firmware, and ROM- resident system code, communications and networking, and debugging live systems. These concepts will be reinforced through C programming assignments using the Linux operating system.									
		r	Fotal	No.	of Lectures	40			
 Text 1. Sam Siewert, "Real-Time Embedded Systems and Components", Cengage Learnin India Edition, 2007. 2. Dreamtech Software Team, "Programming for Embedded Systems", Jhon Wile India Pvt. Ltd., 2008. 									
Reference	 Tanenbaum A S, "Modern Operating Systems", 3rd Edition, PHI learning private limited, 2009. 								

Course Code	Course Name	L	Т	Р	С	Semester
EC570	Quantum Electronics	3	0	0	3	
Торіс	Contents					
Module-I	Basic Quantum Mechanics: Wave-particle duality; basic postulates of Wave Mechanics; Schrödinger equation; Wave function and its interpretation; Time independent Schrödinger equation; Wave packet and uncertainty principle. Operators and their role in QM; Eigen values and Eigen functions; Hermitian operators; Potential wells; parabolic potential well; harmonic oscillators; creation and annihilation operators. Hydrogen atom problem. Time dependent perturbation theory. Maxwell-Boltzmann, Bose and Fermi distributions.					09
Module-II	Quantum Theory of Solids: Motion of electrons in a periodic potential; Kronig- Penney model; E-k diagram; Brillouin zone; Concept of effective mass and of hole; Density-of-states function; Distinction between metals, insulators and semiconductors. Transport in solids; Boltzmann equation; Conductivity; Mobility; Diffusion constant; Thermal properties of electron gas. Thermal properties; lattice vibrations; phonons; heat capacity; thermal conductivity					09
Module-III	Light Propagation: Maxwell and Helmholtz equations; Light propagation in a dielectric and a conducting media; Susceptibility; Absorption. Interaction of light and a two-level atomic system; Absorption, spontaneous and stimulated emission; Einstein's A and B coefficients; Population inversion and amplification of light waves.					07
Module-IV	Light-matter Interaction: Condition for laser oscillation. Different types of Lasers: Gas, Solid, Semiconductor and Dye lasers. Properties of Semiconductor Lasers.					08

	Guided Light; Waveguides; Examples of planar and rectangular guides; Cylindrical guides: optical fibres; Introduction to Photonic Crystals. Introduction to non-linear optics.					
Module-V	Quantum Electronic Devices: Review of Quantum Nanostructures: Quantum Wells, Wires and Dots; Tunnelling phenomena; Resonant Tunnelling; Electron Devices: HEMTs, Resonant Tunnelling Diodes; Single Electron Transistors; Various forms of Lasers; Quantum Cascade Lasers; Photo detectors; QW and QD Infrared Photo detectors.	07				
	Total No. of Lectures	40				
Text	 A. Yariv, <i>Quantum Electronics</i>, John Wiley & Sons, 1st edition, 2012. Edward L. Wolf, <i>Quantum Nanoelectronics: An Introduction to Electronic Nanotechnology and Quantum Computing</i>, John Wiley & Sons, 1st edition, 2009. 					
Reference	 A. Yariv, An Introduction to the Theory and Applications of Quantum Mecha Publications Inc., Reprint edition, 2013. M. A, Nielson, Quantum Computation and Quantum Information, Cambridge Univ 1st edition, 2013. 					

Course Code	Course name	L	Τ	P	C	Semester
EC553	Introduction to IoT and its Applications	3	0	2	4	
Торіс	Contents	No. of Lectures				
Module-I	An Introduction to Internet-of-Things, architectural overview, main design principles and needed capabilities, An IoT architecture outline, standards considerations, M2M and IoT Technology fundamentals.					06
Module-II	State of art, reference model and architecture, IoT reference architecture, functional view, Deployment and Operational view, other relevant architectural views.					08
Module-III	Sensing, transducers classification, Actuation, Smart sensors, Basics of Networking; Communication Protocols, Sensor Networks, Machine to- Machine Communications, Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination.					09
Module-IV	Sensor Technology, RFID Technology, WPAN Technologies for IoT/ M2M, Cellular and mobile network technologies for IoT/ M2M CoAP, REST, Zigbee, Bluetooth, transport and session layer protocols – TCP, MPTCP, UDP, DCCP, HTTP, CoAP, XMPP, AMQP, MQTT					
Module-V	Developing IoTs, Introduction to Python, Introduction to different IoT tools, developing applications through IoT tools, developing sensor-based application through embedded system platform, Integration of Sensors and Actuators with Arduino, Implementing IoT concepts with python; Domain specific applications of IoT: Home automation, Industry applications, Surveillance applications, other IoT applications.					09
Total No. of Lectures						40
Text	 J. Holler, V. Tsiatsis, C. Mulligan, S. Avesand, S. Karnouskos, D. Boyle, From Machine to-Machine to the Internet of Things: Introduction to a New Age of Intelligence, Academic Press, 1st edition, 2014. Bahga, V. Madisetti, Internet of Things: A Hands-on Approach, Universities Press, 1st edition, 2015. P. Raj, Anupama C. Raman, The Internet of Things: Enabling Technologies, Platforms and Use Cases, CRC Press, 1st edition, 2017. 					nce, Academic sities Press, 1 st
Reference	 O. Hersent, D. Boswarthick, O. Elloumi, <i>The Internet of Things: Key Applications and Protocols</i>, Wiley Press, 2nd edition, 2012. 					

2	2. D. Uckelmann, M. Harrison, F. Michahelles, Architecting the Internet of Things, Springer,
	1 st edition, 2011.

Course Code	Course name	L	Τ	P	C	Semester
EC571	Hardware Security	3	0	0	3	
Торіс	Topic Contents					No. of Lectures
Module-I	lule-I Review of modular arithmetic, Groups, rights and Fields, Polynomial fields, Galois Field arithmetic. Mapping between Binary and Composite Fields.					06
Module-II	odule-II Overview of Modern Cryptography: Stream ciphers, Block Ciphers, DES, AES, Rijndael in Composite Field, Elliptic Curves, Montgomery's Algorithm for Scalar Multiplication					08
Module-III	Modern Hardware Design: FPGA architecture, Mapping an Algorithm to Hardware, Hardware Design of Cryptographic Algorithms					00
Module-IV	Overview of Different Issues of Hardware Security, Useful hardware Security Primitives, Side-channel Attacks on Cryptographic Hardware, Testability and Verification of Cryptographic Hardware.					08
Module-V	Modern IC Design and Manufacturing Practices and Hardware Trojans. Differential Fault Analysis of Ciphe	00				
Total No. of Lectures				40		
Text	Text1. Christof Paar, Jan Pelzl, Introduction to Cryptography, Springer, 2 nd edition, 20102. D. Mukhopadhyay, R S Chakraborty, Hardware Security: Design, Threats, an Safeguards, CRC Press, 1 st edition, 2015					
Reference	ference 1. M Joye, M. Tunstall, <i>Fault Analysis in Cryptography</i> , Springer, 1 st edition, 2012.					, 2012.